1,365 research outputs found

    Detectability of Macroscopic Structures in Directed Asymmetric Stochastic Block Model

    Full text link
    We study the problem of identifying macroscopic structures in networks, characterizing the impact of introducing link directions on the detectability phase transition. To this end, building on the stochastic block model, we construct a class of hardly detectable directed networks. We find closed form solutions by using belief propagation method showing how the transition line depends on the assortativity and the asymmetry of the network. Finally, we numerically identify the existence of a hard phase for detection close to the transition point.Comment: 9 pages, 7 figure

    Spectral redemption: clustering sparse networks

    Get PDF
    Spectral algorithms are classic approaches to clustering and community detection in networks. However, for sparse networks the standard versions of these algorithms are suboptimal, in some cases completely failing to detect communities even when other algorithms such as belief propagation can do so. Here we introduce a new class of spectral algorithms based on a non-backtracking walk on the directed edges of the graph. The spectrum of this operator is much better-behaved than that of the adjacency matrix or other commonly used matrices, maintaining a strong separation between the bulk eigenvalues and the eigenvalues relevant to community structure even in the sparse case. We show that our algorithm is optimal for graphs generated by the stochastic block model, detecting communities all the way down to the theoretical limit. We also show the spectrum of the non-backtracking operator for some real-world networks, illustrating its advantages over traditional spectral clustering.Comment: 11 pages, 6 figures. Clarified to what extent our claims are rigorous, and to what extent they are conjectures; also added an interpretation of the eigenvectors of the 2n-dimensional version of the non-backtracking matri
    corecore