382,885 research outputs found

    Multi-Domain Adversarial Feature Generalization for Person Re-Identification

    Full text link
    With the assistance of sophisticated training methods applied to single labeled datasets, the performance of fully-supervised person re-identification (Person Re-ID) has been improved significantly in recent years. However, these models trained on a single dataset usually suffer from considerable performance degradation when applied to videos of a different camera network. To make Person Re-ID systems more practical and scalable, several cross-dataset domain adaptation methods have been proposed, which achieve high performance without the labeled data from the target domain. However, these approaches still require the unlabeled data of the target domain during the training process, making them impractical. A practical Person Re-ID system pre-trained on other datasets should start running immediately after deployment on a new site without having to wait until sufficient images or videos are collected and the pre-trained model is tuned. To serve this purpose, in this paper, we reformulate person re-identification as a multi-dataset domain generalization problem. We propose a multi-dataset feature generalization network (MMFA-AAE), which is capable of learning a universal domain-invariant feature representation from multiple labeled datasets and generalizing it to `unseen' camera systems. The network is based on an adversarial auto-encoder to learn a generalized domain-invariant latent feature representation with the Maximum Mean Discrepancy (MMD) measure to align the distributions across multiple domains. Extensive experiments demonstrate the effectiveness of the proposed method. Our MMFA-AAE approach not only outperforms most of the domain generalization Person Re-ID methods, but also surpasses many state-of-the-art supervised methods and unsupervised domain adaptation methods by a large margin.Comment: TIP (Accept with Mandatory Minor Revisions

    Scalable deep feature learning for person re-identification

    Get PDF
    Person Re-identification (Person Re-ID) is one of the fundamental and critical tasks of the video surveillance systems. Given a probe image of a person obtained from one Closed Circuit Television (CCTV) camera, the objective of Person Re-ID is to identify the same person from a large gallery set of images captured by other cameras within the surveillance system. By successfully associating all the pedestrians, we can quickly search, track and even plot a movement trajectory of any person of interest within a CCTV system. Currently, most search and re-identification jobs are still processed manually by police or security officers. It is desirable to automate this process in order to reduce an enormous amount of human labour and increase the pedestrian tracking and retrieval speed. However, Person Re-ID is a challenging problem because of so many uncontrolled properties of a multi-camera surveillance system: cluttered backgrounds, large illumination variations, different human poses and different camera viewing angles. The main goal of this thesis is to develop deep learning based person reidentification models for real-world deployment in surveillance system. This thesis focuses on learning and extracting robust feature representations of pedestrians. In this thesis, we first proposed two supervised deep neural network architectures. One end-to-end Siamese network is developed for real-time person matching tasks. It focuses on extracting the correspondence feature between two images. For an offline person retrieval application, we follow the commonly used feature extraction with distance metric two-stage pipline and propose a strong feature embedding extraction network. In addition, we surveyed many valuable training techniques proposed recently in the literature to integrate them with our newly proposed NP-Triplet xiii loss to construct a strong Person Re-ID feature extraction model. However, during the deployment of the online matching and offline retrieval system, we realise the poor scalability issue in most supervised models. A model trained from labelled images obtained from one system cannot perform well on other unseen systems. Aiming to make the Person Re-ID models more scalable for different surveillance systems, the third work of this thesis presents cross-Dataset feature transfer method (MMFA). MMFA can train and transfer the model learned from one system to another simultaneously. Our goal to create a more scalable and robust person reidentification system did not stop here. The last work of this thesis, we address the limitation of MMFA structure and proposed a multi-dataset feature generalisation approach (MMFA-AAE), which aims to learn a universal feature representation from multiple labelled datasets. Aiming to facilitate the research towards Person Re-ID applications in more realistic scenarios, a new datasets ROSE-IDENTITY-Outdoor (RE-ID-Outdoor) has been collected and annotated with the largest number of cameras and 40 mid-level attributes

    On-the-fly feature importance mining for person re-identification

    Get PDF
    State-of-the-art person re-identification methods seek robust person matching through combining various feature types. Often, these features are implicitly assigned with generic weights, which are assumed to be universally and equally good for all individuals, independent of people's different appearances. In this study, we show that certain features play more important role than others under different viewing conditions. To explore this characteristic, we propose a novel unsupervised approach to bottom-up feature importance mining on-the-fly specific to each re-identification probe target image, so features extracted from different individuals are weighted adaptively driven by their salient and inherent appearance attributes. Extensive experiments on three public datasets give insights on how feature importance can vary depending on both the viewing condition and specific person's appearance, and demonstrate that unsupervised bottom-up feature importance mining specific to each probe image can facilitate more accurate re-identification especially when it is combined with generic universal weights obtained using existing distance metric learning methods. © 2013 Elsevier Ltd

    Targeted Youth Support Pathfinders evaluation : final report

    Get PDF

    Targeted youth support pathfinders : interim evaluation

    Get PDF

    Moral Practice in Late Stoicism and Buddhist Meditation

    Get PDF
    I argue in this essay that Stoic philosophers in the late Greco-Roman period utilized philosophical exercises and spiritual technologies similar in form to a meditative exercise currently practiced in Buddhism. I begin with an in-depth discussion of moral development in the late Stoa, focusing particularly on their theories of cosmopolitanism and oikeiōsis. These theoretical commitments, I argue, necessitated the adoption of exercises and practices designed to guide practitioners toward the goal of universal moral concern. Using insights gained from Buddhist practice, I identify passages in Stoic texts that call for and prescribe moral exercise. While much work in comparative philosophy compares the content of diverse philosophical theories, the form that these theories take can also be compared. Stoic philosophy was viewed as a “way of life” by many ancient philosophers, and thus their philosophical views share several formal characteristics with Buddhist religious practices. The primary good realized by this comparison, I conclude, is to outline the ways in which Greco-Roman philosophies can be enriched by reading these theories in light of the lived, practical traditions that characterize Buddhist thought
    corecore