1,161 research outputs found

    Streaming Video QoE Modeling and Prediction: A Long Short-Term Memory Approach

    Get PDF
    HTTP based adaptive video streaming has become a popular choice of streaming due to the reliable transmission and the flexibility offered to adapt to varying network conditions. However, due to rate adaptation in adaptive streaming, the quality of the videos at the client keeps varying with time depending on the end-to-end network conditions. Further, varying network conditions can lead to the video client running out of playback content resulting in rebuffering events. These factors affect the user satisfaction and cause degradation of the user quality of experience (QoE). It is important to quantify the perceptual QoE of the streaming video users and monitor the same in a continuous manner so that the QoE degradation can be minimized. However, the continuous evaluation of QoE is challenging as it is determined by complex dynamic interactions among the QoE influencing factors. Towards this end, we present LSTM-QoE, a recurrent neural network based QoE prediction model using a Long Short-Term Memory (LSTM) network. The LSTM-QoE is a network of cascaded LSTM blocks to capture the nonlinearities and the complex temporal dependencies involved in the time varying QoE. Based on an evaluation over several publicly available continuous QoE databases, we demonstrate that the LSTM-QoE has the capability to model the QoE dynamics effectively. We compare the proposed model with the state-of-the-art QoE prediction models and show that it provides superior performance across these databases. Further, we discuss the state space perspective for the LSTM-QoE and show the efficacy of the state space modeling approaches for QoE prediction

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Learning as a Nonlinear Line of Attraction for Pattern Association, Classification and Recognition

    Get PDF
    Development of a mathematical model for learning a nonlinear line of attraction is presented in this dissertation, in contrast to the conventional recurrent neural network model in which the memory is stored in an attractive fixed point at discrete location in state space. A nonlinear line of attraction is the encapsulation of attractive fixed points scattered in state space as an attractive nonlinear line, describing patterns with similar characteristics as a family of patterns. It is usually of prime imperative to guarantee the convergence of the dynamics of the recurrent network for associative learning and recall. We propose to alter this picture. That is, if the brain remembers by converging to the state representing familiar patterns, it should also diverge from such states when presented by an unknown encoded representation of a visual image. The conception of the dynamics of the nonlinear line attractor network to operate between stable and unstable states is the second contribution in this dissertation research. These criteria can be used to circumvent the plasticity-stability dilemma by using the unstable state as an indicator to create a new line for an unfamiliar pattern. This novel learning strategy utilizes stability (convergence) and instability (divergence) criteria of the designed dynamics to induce self-organizing behavior. The self-organizing behavior of the nonlinear line attractor model can manifest complex dynamics in an unsupervised manner. The third contribution of this dissertation is the introduction of the concept of manifold of color perception. The fourth contribution of this dissertation is the development of a nonlinear dimensionality reduction technique by embedding a set of related observations into a low-dimensional space utilizing the result attained by the learned memory matrices of the nonlinear line attractor network. Development of a system for affective states computation is also presented in this dissertation. This system is capable of extracting the user\u27s mental state in real time using a low cost computer. It is successfully interfaced with an advanced learning environment for human-computer interaction

    An efficient color image compression technique

    Get PDF
    We present a new image compression method to improve visual perception of the decompressed images and achieve higher image compression ratio. This method balances between the compression rate and image quality by compressing the essential parts of the image-edges. The key subject/edge is of more significance than background/non-edge image. Taking into consideration the value of image components and the effect of smoothness in image compression, this method classifies the image components as edge or non-edge. Low-quality lossy compression is applied to non-edge components whereas high-quality lossy compression is applied to edge components. Outcomes show that our suggested method is efficient in terms of compression ratio, bits per-pixel and peak signal to noise ratio
    corecore