57,199 research outputs found

    A framework for the local information dynamics of distributed computation in complex systems

    Full text link
    The nature of distributed computation has often been described in terms of the component operations of universal computation: information storage, transfer and modification. We review the first complete framework that quantifies each of these individual information dynamics on a local scale within a system, and describes the manner in which they interact to create non-trivial computation where "the whole is greater than the sum of the parts". We describe the application of the framework to cellular automata, a simple yet powerful model of distributed computation. This is an important application, because the framework is the first to provide quantitative evidence for several important conjectures about distributed computation in cellular automata: that blinkers embody information storage, particles are information transfer agents, and particle collisions are information modification events. The framework is also shown to contrast the computations conducted by several well-known cellular automata, highlighting the importance of information coherence in complex computation. The results reviewed here provide important quantitative insights into the fundamental nature of distributed computation and the dynamics of complex systems, as well as impetus for the framework to be applied to the analysis and design of other systems.Comment: 44 pages, 8 figure

    On the shapes of elementary domains or why Mandelbrot Set is made from almost ideal circles?

    Get PDF
    Direct look at the celebrated "chaotic" Mandelbrot Set in Fig..\ref{Mand2} immediately reveals that it is a collection of almost ideal circles and cardioids, unified in a specific {\it forest} structure. In /hep-th/9501235 a systematic algebro-geometric approach was developed to the study of generic Mandelbrot sets, but emergency of nearly ideal circles in the special case of the family x2+cx^2+c was not fully explained. In the present paper the shape of the elementary constituents of Mandelbrot Set is explicitly {\it calculated}, and difference between the shapes of {\it root} and {\it descendant} domains (cardioids and circles respectively) is explained. Such qualitative difference persists for all other Mandelbrot sets: descendant domains always have one less cusp than the root ones. Details of the phase transition between different Mandelbrot sets are explicitly demonstrated, including overlaps between elementary domains and dynamics of attraction/repulsion regions. Explicit examples of 3-dimensional sections of Universal Mandelbrot Set are given. Also a systematic small-size approximation is developed for evaluation of various Feigenbaum indices.Comment: 65 pages, 30 figure

    Observations of spatiotemporal instabilities in the strong-driving regime of an AC-driven nonlinear Schr\"odinger system

    Full text link
    Localized dissipative structures (LDS) have been predicted to display a rich array of instabilities, yet systematic experimental studies have remained scarce. We have used a synchronously-driven optical fiber ring resonator to experimentally study LDS instabilities in the strong-driving regime of the AC-driven nonlinear Schr\"odinger equation (also known as the Lugiato-Lefever model). Through continuous variation of a single control parameter, we have observed a string of theoretically predicted instability modes, including irregular oscillations and chaotic collapses. Beyond a critical point, we observe behaviour reminiscent of a phase transition: LDSs trigger localized domains of spatiotemporal chaos that invade the surrounding homogeneous state. Our findings directly confirm a number of theoretical predictions, and they highlight that complex LDS instabilities can play a role in experimental systems.Comment: 6 pages, 4 figure

    Dynamics and Thermodynamics of Systems with Long Range Interactions: an Introduction

    Full text link
    We review theoretical results obtained recently in the framework of statistical mechanics to study systems with long range forces. This fundamental and methodological study leads us to consider the different domains of applications in a trans-disciplinary perspective (astrophysics, nuclear physics, plasmas physics, metallic clusters, hydrodynamics,...) with a special emphasis on Bose-Einstein condensates.Comment: Chapter of the forthcoming "Lecture Notes in Physics" volume: ``Dynamics and Thermodynamics of Systems with Long Range Interactions'', T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics Vol. 602, Springer (2002). (see http://link.springer.de/series/lnpp/

    Kinetics, Hydrodynamics and Stochastodynamics of Cellular Structure Coarsening

    Full text link
    For the first time the phenomenon of cellular structure coarsening are consistently analysed from the positions of kinetic, hydrodynamic and stochastodynamic theories of nonequilibrium statistical systems. Thereby micro-, meso- and macroscopic levels of approach are distinguished. At the microscopic level the cellular structure is describe by a probability distribution function in a phase space of cell coordinates and of cell sizes. A kinetic equation for the function is written and a development to a hydrodynamic equation of a mesoscopic cell medium is realised. It has the form of a diffusion-reaction equation with a negative "diffusion" coefficient and with a cell interface density playing the role of concentration. Its analysis reveals a new effect of macroscopic patterning in the cell medium: existence of space-correlated stochastic fluctuations of the cell interface density.Comment: 12 pages, Latex, 3 eps figures. Submitted for publication in Modern Physics Letters B on 11/04/97, accepted on 18/09/97 . Revision was made to include the PS figures in the body of the pape
    • …
    corecore