36,839 research outputs found

    On-line regression competitive with reproducing kernel Hilbert spaces

    Get PDF
    We consider the problem of on-line prediction of real-valued labels, assumed bounded in absolute value by a known constant, of new objects from known labeled objects. The prediction algorithm's performance is measured by the squared deviation of the predictions from the actual labels. No stochastic assumptions are made about the way the labels and objects are generated. Instead, we are given a benchmark class of prediction rules some of which are hoped to produce good predictions. We show that for a wide range of infinite-dimensional benchmark classes one can construct a prediction algorithm whose cumulative loss over the first N examples does not exceed the cumulative loss of any prediction rule in the class plus O(sqrt(N)); the main differences from the known results are that we do not impose any upper bound on the norm of the considered prediction rules and that we achieve an optimal leading term in the excess loss of our algorithm. If the benchmark class is "universal" (dense in the class of continuous functions on each compact set), this provides an on-line non-stochastic analogue of universally consistent prediction in non-parametric statistics. We use two proof techniques: one is based on the Aggregating Algorithm and the other on the recently developed method of defensive forecasting.Comment: 37 pages, 1 figur

    Modelling Learning as Modelling

    Get PDF
    Economists tend to represent learning as a procedure for estimating the parameters of the "correct" econometric model. We extend this approach by assuming that agents specify as well as estimate models. Learning thus takes the form of a dynamic process of developing models using an internal language of representation where expectations are formed by forecasting with the best current model. This introduces a distinction between the form and content of the internal models which is particularly relevant for boundedly rational agents. We propose a framework for such model development which use a combination of measures: the error with respect to past data, the complexity of the model, the cost of finding the model and a measure of the model's specificity The agent has to make various trade-offs between them. A utility learning agent is given as an example

    Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction

    Get PDF
    This paper reports the results of the NN3 competition, which is a replication of the M3 competition with an extension of the competition towards neural network (NN) and computational intelligence (CI) methods, in order to assess what progress has been made in the 10 years since the M3 competition. Two masked subsets of the M3 monthly industry data, containing 111 and 11 empirical time series respectively, were chosen, controlling for multiple data conditions of time series length (short/long), data patterns (seasonal/non-seasonal) and forecasting horizons (short/medium/long). The relative forecasting accuracy was assessed using the metrics from the M3, together with later extensions of scaled measures, and non-parametric statistical tests. The NN3 competition attracted 59 submissions from NN, CI and statistics, making it the largest CI competition on time series data. Its main findings include: (a) only one NN outperformed the damped trend using the sMAPE, but more contenders outperformed the AutomatANN of the M3; (b) ensembles of CI approaches performed very well, better than combinations of statistical methods; (c) a novel, complex statistical method outperformed all statistical and Cl benchmarks; and (d) for the most difficult subset of short and seasonal series, a methodology employing echo state neural networks outperformed all others. The NN3 results highlight the ability of NN to handle complex data, including short and seasonal time series, beyond prior expectations, and thus identify multiple avenues for future research. (C) 2011 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved

    Enhanced manufacturing storage management using data mining prediction techniques

    Get PDF
    Performing an efficient storage management is a key issue for reducing costs in the manufacturing process. And the first step to accomplish this task is to have good estimations of the consumption of every storage component. For making accurate consumption estimations two main approaches are possible: using past utilization values (time series); and/or considering other external factors affecting the spending rates. Time series forecasting is the most common approach due to the fact that not always is clear the causes affecting consumption. Several classical methods have extensively been used, mainly ARIMA models. As an alternative, in this paper it is proposed to use prediction techniques based on the data mining realm. The use of consumption prediction algorithms clearly increases the storage management efficiency. The predictors based on data mining can offer enhanced solutions in many cases.Telefónica, through the “Cátedra de Telefónica Inteligencia en la Red”Paloma Luna Garrid

    Competitive on-line learning with a convex loss function

    Get PDF
    We consider the problem of sequential decision making under uncertainty in which the loss caused by a decision depends on the following binary observation. In competitive on-line learning, the goal is to design decision algorithms that are almost as good as the best decision rules in a wide benchmark class, without making any assumptions about the way the observations are generated. However, standard algorithms in this area can only deal with finite-dimensional (often countable) benchmark classes. In this paper we give similar results for decision rules ranging over an arbitrary reproducing kernel Hilbert space. For example, it is shown that for a wide class of loss functions (including the standard square, absolute, and log loss functions) the average loss of the master algorithm, over the first NN observations, does not exceed the average loss of the best decision rule with a bounded norm plus O(N1/2)O(N^{-1/2}). Our proof technique is very different from the standard ones and is based on recent results about defensive forecasting. Given the probabilities produced by a defensive forecasting algorithm, which are known to be well calibrated and to have good resolution in the long run, we use the expected loss minimization principle to find a suitable decision.Comment: 26 page
    corecore