3,977 research outputs found

    On the possible Computational Power of the Human Mind

    Full text link
    The aim of this paper is to address the question: Can an artificial neural network (ANN) model be used as a possible characterization of the power of the human mind? We will discuss what might be the relationship between such a model and its natural counterpart. A possible characterization of the different power capabilities of the mind is suggested in terms of the information contained (in its computational complexity) or achievable by it. Such characterization takes advantage of recent results based on natural neural networks (NNN) and the computational power of arbitrary artificial neural networks (ANN). The possible acceptance of neural networks as the model of the human mind's operation makes the aforementioned quite relevant.Comment: Complexity, Science and Society Conference, 2005, University of Liverpool, UK. 23 page

    A Swiss Pocket Knife for Computability

    Get PDF
    This research is about operational- and complexity-oriented aspects of classical foundations of computability theory. The approach is to re-examine some classical theorems and constructions, but with new criteria for success that are natural from a programming language perspective. Three cornerstones of computability theory are the S-m-ntheorem; Turing's "universal machine"; and Kleene's second recursion theorem. In today's programming language parlance these are respectively partial evaluation, self-interpretation, and reflection. In retrospect it is fascinating that Kleene's 1938 proof is constructive; and in essence builds a self-reproducing program. Computability theory originated in the 1930s, long before the invention of computers and programs. Its emphasis was on delimiting the boundaries of computability. Some milestones include 1936 (Turing), 1938 (Kleene), 1967 (isomorphism of programming languages), 1985 (partial evaluation), 1989 (theory implementation), 1993 (efficient self-interpretation) and 2006 (term register machines). The "Swiss pocket knife" of the title is a programming language that allows efficient computer implementation of all three computability cornerstones, emphasising the third: Kleene's second recursion theorem. We describe experiments with a tree-based computational model aiming for both fast program generation and fast execution of the generated programs.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455
    corecore