132,818 research outputs found

    Consequences of nonclassical measurement for the algorithmic description of continuous dynamical systems

    Get PDF
    Continuous dynamical systems intuitively seem capable of more complex behavior than discrete systems. If analyzed in the framework of the traditional theory of computation, a continuous dynamical system with countably many quasistable states has at least the computational power of a universal Turing machine. Such an analysis assumes, however, the classical notion of measurement. If measurement is viewed nonclassically, a continuous dynamical system cannot, even in principle, exhibit behavior that cannot be simulated by a universal Turing machine

    Universal Uhrig dynamical decoupling for bosonic systems

    Full text link
    We construct efficient deterministic dynamical decoupling schemes protecting continuous variable degrees of freedom. Our schemes target decoherence induced by quadratic system-bath interactions with analytic time-dependence. We show how to suppress such interactions to NN-th order using only NN pulses. Furthermore, we show to homogenize a 2m2^m-mode bosonic system using only (N+1)2m+1(N+1)^{2m+1} pulses, yielding - up to NN-th order - an effective evolution described by non-interacting harmonic oscillators with identical frequencies. The decoupled and homogenized system provides natural decoherence-free subspaces for encoding quantum information. Our schemes only require pulses which are tensor products of single-mode passive Gaussian unitaries and SWAP gates between pairs of modes.Comment: 17 pages, 2 figures

    Dynamical Universal Behavior in Quantum Chaotic Systems

    Full text link
    We discover numerically that a moving wave packet in a quantum chaotic billiard will always evolve into a quantum state, whose density probability distribution is exponential. This exponential distribution is found to be universal for quantum chaotic systems with rigorous proof. In contrast, for the corresponding classical system, the distribution is Gaussian. We find that the quantum exponential distribution can smoothly change to the classical Gaussian distribution with coarse graining.Comment: 4 figure

    Universal properties of many-body delocalization transitions

    Full text link
    We study the dynamical melting of "hot" one-dimensional many-body localized systems. As disorder is weakened below a critical value these non-thermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By accounting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow sub-diffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics.Comment: 12 pages, 6 figures; major changes from v1, including a modified approach and new emphasis on conventional MBL systems rather than their critical variant

    Universality in Three-Frequency Resonances

    Get PDF
    We investigate the hierarchical structure of three-frequency resonances in nonlinear dynamical systems with three interacting frequencies. We hypothesize an ordering of these resonances based on a generalization of the Farey tree organization from two frequencies to three. In experiments and numerical simulations we demonstrate that our hypothesis describes the hierarchies of three-frequency resonances in representative dynamical systems. We conjecture that this organization may be universal across a large class of three-frequency systems

    Universality in Systems with Power-Law Memory and Fractional Dynamics

    Full text link
    There are a few different ways to extend regular nonlinear dynamical systems by introducing power-law memory or considering fractional differential/difference equations instead of integer ones. This extension allows the introduction of families of nonlinear dynamical systems converging to regular systems in the case of an integer power-law memory or an integer order of derivatives/differences. The examples considered in this review include the logistic family of maps (converging in the case of the first order difference to the regular logistic map), the universal family of maps, and the standard family of maps (the latter two converging, in the case of the second difference, to the regular universal and standard maps). Correspondingly, the phenomenon of transition to chaos through a period doubling cascade of bifurcations in regular nonlinear systems, known as "universality", can be extended to fractional maps, which are maps with power-/asymptotically power-law memory. The new features of universality, including cascades of bifurcations on single trajectories, which appear in fractional (with memory) nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201

    Universal Dynamical Decoupling: Two-Qubit States and Beyond

    Full text link
    Uhrig's dynamical decoupling pulse sequence has emerged as one universal and highly promising approach to decoherence suppression. So far both the theoretical and experimental studies have examined single-qubit decoherence only. This work extends Uhrig's universal dynamical decoupling from one-qubit to two-qubit systems and even to general multi-level quantum systems. In particular, we show that by designing appropriate control Hamiltonians for a two-qubit or a multi-level system, Uhrig's pulse sequence can also preserve a generalized quantum coherence measure to the order of 1+O(TN+1)1+O(T^{N+1}), with only NN pulses. Our results lead to a very useful scheme for efficiently locking two-qubit entangled states. Future important applications of Uhrig's pulse sequence in preserving the quantum coherence of multi-level quantum systems can also be anticipated.Comment: 10 pages, 4 figures, minor changes made, submitted to PR
    corecore