4,411 research outputs found

    Universal Lemmatizer: A Sequence to Sequence Model for Lemmatizing Universal Dependencies Treebanks

    Full text link
    In this paper we present a novel lemmatization method based on a sequence-to-sequence neural network architecture and morphosyntactic context representation. In the proposed method, our context-sensitive lemmatizer generates the lemma one character at a time based on the surface form characters and its morphosyntactic features obtained from a morphological tagger. We argue that a sliding window context representation suffers from sparseness, while in majority of cases the morphosyntactic features of a word bring enough information to resolve lemma ambiguities while keeping the context representation dense and more practical for machine learning systems. Additionally, we study two different data augmentation methods utilizing autoencoder training and morphological transducers especially beneficial for low resource languages. We evaluate our lemmatizer on 52 different languages and 76 different treebanks, showing that our system outperforms all latest baseline systems. Compared to the best overall baseline, UDPipe Future, our system outperforms it on 62 out of 76 treebanks reducing errors on average by 19% relative. The lemmatizer together with all trained models is made available as a part of the Turku-neural-parsing-pipeline under the Apache 2.0 license.Comment: Accepted to the Journal of Natural Language Engineerin

    Parser Training with Heterogeneous Treebanks

    Full text link
    How to make the most of multiple heterogeneous treebanks when training a monolingual dependency parser is an open question. We start by investigating previously suggested, but little evaluated, strategies for exploiting multiple treebanks based on concatenating training sets, with or without fine-tuning. We go on to propose a new method based on treebank embeddings. We perform experiments for several languages and show that in many cases fine-tuning and treebank embeddings lead to substantial improvements over single treebanks or concatenation, with average gains of 2.0--3.5 LAS points. We argue that treebank embeddings should be preferred due to their conceptual simplicity, flexibility and extensibility.Comment: 7 pages. Accepted to ACL 2018, short paper

    82 Treebanks, 34 Models: Universal Dependency Parsing with Multi-Treebank Models

    Full text link
    We present the Uppsala system for the CoNLL 2018 Shared Task on universal dependency parsing. Our system is a pipeline consisting of three components: the first performs joint word and sentence segmentation; the second predicts part-of- speech tags and morphological features; the third predicts dependency trees from words and tags. Instead of training a single parsing model for each treebank, we trained models with multiple treebanks for one language or closely related languages, greatly reducing the number of models. On the official test run, we ranked 7th of 27 teams for the LAS and MLAS metrics. Our system obtained the best scores overall for word segmentation, universal POS tagging, and morphological features.Comment: Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencie

    Low-Resource Syntactic Transfer with Unsupervised Source Reordering

    Full text link
    We describe a cross-lingual transfer method for dependency parsing that takes into account the problem of word order differences between source and target languages. Our model only relies on the Bible, a considerably smaller parallel data than the commonly used parallel data in transfer methods. We use the concatenation of projected trees from the Bible corpus, and the gold-standard treebanks in multiple source languages along with cross-lingual word representations. We demonstrate that reordering the source treebanks before training on them for a target language improves the accuracy of languages outside the European language family. Our experiments on 68 treebanks (38 languages) in the Universal Dependencies corpus achieve a high accuracy for all languages. Among them, our experiments on 16 treebanks of 12 non-European languages achieve an average UAS absolute improvement of 3.3% over a state-of-the-art method.Comment: Accepted in NAACL 201

    Towards JointUD: Part-of-speech Tagging and Lemmatization using Recurrent Neural Networks

    Full text link
    This paper describes our submission to CoNLL 2018 UD Shared Task. We have extended an LSTM-based neural network designed for sequence tagging to additionally generate character-level sequences. The network was jointly trained to produce lemmas, part-of-speech tags and morphological features. Sentence segmentation, tokenization and dependency parsing were handled by UDPipe 1.2 baseline. The results demonstrate the viability of the proposed multitask architecture, although its performance still remains far from state-of-the-art.Comment: System description paper of our system for the CoNLL 2018 shared task on Universal Dependency parsin

    SyntaxNet Models for the CoNLL 2017 Shared Task

    Full text link
    We describe a baseline dependency parsing system for the CoNLL2017 Shared Task. This system, which we call "ParseySaurus," uses the DRAGNN framework [Kong et al, 2017] to combine transition-based recurrent parsing and tagging with character-based word representations. On the v1.3 Universal Dependencies Treebanks, the new system outpeforms the publicly available, state-of-the-art "Parsey's Cousins" models by 3.47% absolute Labeled Accuracy Score (LAS) across 52 treebanks.Comment: Tech repor

    Cross-Lingual Transfer of Semantic Roles: From Raw Text to Semantic Roles

    Full text link
    We describe a transfer method based on annotation projection to develop a dependency-based semantic role labeling system for languages for which no supervised linguistic information other than parallel data is available. Unlike previous work that presumes the availability of supervised features such as lemmas, part-of-speech tags, and dependency parse trees, we only make use of word and character features. Our deep model considers using character-based representations as well as unsupervised stem embeddings to alleviate the need for supervised features. Our experiments outperform a state-of-the-art method that uses supervised lexico-syntactic features on 6 out of 7 languages in the Universal Proposition Bank.Comment: Accepted at the 13th International Conference on Computational Semantics (IWCS 2019

    An improved neural network model for joint POS tagging and dependency parsing

    Full text link
    We propose a novel neural network model for joint part-of-speech (POS) tagging and dependency parsing. Our model extends the well-known BIST graph-based dependency parser (Kiperwasser and Goldberg, 2016) by incorporating a BiLSTM-based tagging component to produce automatically predicted POS tags for the parser. On the benchmark English Penn treebank, our model obtains strong UAS and LAS scores at 94.51% and 92.87%, respectively, producing 1.5+% absolute improvements to the BIST graph-based parser, and also obtaining a state-of-the-art POS tagging accuracy at 97.97%. Furthermore, experimental results on parsing 61 "big" Universal Dependencies treebanks from raw texts show that our model outperforms the baseline UDPipe (Straka and Strakov\'a, 2017) with 0.8% higher average POS tagging score and 3.6% higher average LAS score. In addition, with our model, we also obtain state-of-the-art downstream task scores for biomedical event extraction and opinion analysis applications. Our code is available together with all pre-trained models at: https://github.com/datquocnguyen/jPTDPComment: 11 pages; In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, to appea

    Token-based typology and word order entropy: A study based on universal dependencies

    No full text
    The present paper discusses the benefits and challenges of token-based typology, which takes into account the frequencies of words and constructions in language use. This approach makes it possible to introduce new criteria for language classification, which would be difficult or impossible to achieve with the traditional, type-based approach. This point is illustrated by several quantitative studies of word order variation, which can be measured as entropy at different levels of granularity. I argue that this variation can be explained by general functional mechanisms and pressures, which manifest themselves in language use, such as optimization of processing (including avoidance of ambiguity) and grammaticalization of predictable units occurring in chunks. The case studies are based on multilingual corpora, which have been parsed using the Universal Dependencies annotation scheme

    Modeling Composite Labels for Neural Morphological Tagging

    Full text link
    Neural morphological tagging has been regarded as an extension to POS tagging task, treating each morphological tag as a monolithic label and ignoring its internal structure. We propose to view morphological tags as composite labels and explicitly model their internal structure in a neural sequence tagger. For this, we explore three different neural architectures and compare their performance with both CRF and simple neural multiclass baselines. We evaluate our models on 49 languages and show that the neural architecture that models the morphological labels as sequences of morphological category values performs significantly better than both baselines establishing state-of-the-art results in morphological tagging for most languages.Comment: Proceedings of the 22nd Conference on Computational Natural Language Learning, 201
    • …
    corecore