53,148 research outputs found

    Geometry and Expressive Power of Conditional Restricted Boltzmann Machines

    Full text link
    Conditional restricted Boltzmann machines are undirected stochastic neural networks with a layer of input and output units connected bipartitely to a layer of hidden units. These networks define models of conditional probability distributions on the states of the output units given the states of the input units, parametrized by interaction weights and biases. We address the representational power of these models, proving results their ability to represent conditional Markov random fields and conditional distributions with restricted supports, the minimal size of universal approximators, the maximal model approximation errors, and on the dimension of the set of representable conditional distributions. We contribute new tools for investigating conditional probability models, which allow us to improve the results that can be derived from existing work on restricted Boltzmann machine probability models.Comment: 30 pages, 5 figures, 1 algorith

    Bad Universal Priors and Notions of Optimality

    Get PDF
    A big open question of algorithmic information theory is the choice of the universal Turing machine (UTM). For Kolmogorov complexity and Solomonoff induction we have invariance theorems: the choice of the UTM changes bounds only by a constant. For the universally intelligent agent AIXI (Hutter, 2005) no invariance theorem is known. Our results are entirely negative: we discuss cases in which unlucky or adversarial choices of the UTM cause AIXI to misbehave drastically. We show that Legg-Hutter intelligence and thus balanced Pareto optimality is entirely subjective, and that every policy is Pareto optimal in the class of all computable environments. This undermines all existing optimality properties for AIXI. While it may still serve as a gold standard for AI, our results imply that AIXI is a relative theory, dependent on the choice of the UTM.Comment: COLT 201

    Algorithmic Complexity Bounds on Future Prediction Errors

    Get PDF
    We bound the future loss when predicting any (computably) stochastic sequence online. Solomonoff finitely bounded the total deviation of his universal predictor MM from the true distribution mumu by the algorithmic complexity of mumu. Here we assume we are at a time t>1t>1 and already observed x=x1...xtx=x_1...x_t. We bound the future prediction performance on xt+1xt+2...x_{t+1}x_{t+2}... by a new variant of algorithmic complexity of mumu given xx, plus the complexity of the randomness deficiency of xx. The new complexity is monotone in its condition in the sense that this complexity can only decrease if the condition is prolonged. We also briefly discuss potential generalizations to Bayesian model classes and to classification problems.Comment: 21 page
    • …
    corecore