831 research outputs found

    Translating partitioned cellular automata into classical type cellular automata

    No full text
    ISBN 978-5-94057-377-7International audiencePartitioned cellular automata are a variant of cellular automata that was defined in order to make it very simple to create complex automata having strong properties such as number conservation and reversibility (which are often difficult to obtain on cellular automata). In this article we show how a partitioned cellular automaton can be translated into a regular cellular automaton in such a way that these properties are conserved

    MFCS\u2798 Satellite Workshop on Cellular Automata

    Get PDF
    For the 1998 conference on Mathematical Foundations of Computer Science (MFCS\u2798) four papers on Cellular Automata were accepted as regular MFCS\u2798 contributions. Furthermore an MFCS\u2798 satellite workshop on Cellular Automata was organized with ten additional talks. The embedding of the workshop into the conference with its participants coming from a broad spectrum of fields of work lead to interesting discussions and a fruitful exchange of ideas. The contributions which had been accepted for MFCS\u2798 itself may be found in the conference proceedings, edited by L. Brim, J. Gruska and J. Zlatuska, Springer LNCS 1450. All other (invited and regular) papers of the workshop are contained in this technical report. (One paper, for which no postscript file of the full paper is available, is only included in the printed version of the report). Contents: F. Blanchard, E. Formenti, P. Kurka: Cellular automata in the Cantor, Besicovitch and Weyl Spaces K. Kobayashi: On Time Optimal Solutions of the Two-Dimensional Firing Squad Synchronization Problem L. Margara: Topological Mixing and Denseness of Periodic Orbits for Linear Cellular Automata over Z_m B. Martin: A Geometrical Hierarchy of Graph via Cellular Automata K. Morita, K. Imai: Number-Conserving Reversible Cellular Automata and Their Computation-Universality C. Nichitiu, E. Remila: Simulations of graph automata K. Svozil: Is the world a machine? H. Umeo: Cellular Algorithms with 1-bit Inter-Cell Communications F. Reischle, Th. Worsch: Simulations between alternating CA, alternating TM and circuit families K. Sutner: Computation Theory of Cellular Automat

    On Conservative and Monotone One-dimensional Cellular Automata and Their Particle Representation

    Full text link
    Number-conserving (or {\em conservative}) cellular automata have been used in several contexts, in particular traffic models, where it is natural to think about them as systems of interacting particles. In this article we consider several issues concerning one-dimensional cellular automata which are conservative, monotone (specially ``non-increasing''), or that allow a weaker kind of conservative dynamics. We introduce a formalism of ``particle automata'', and discuss several properties that they may exhibit, some of which, like anticipation and momentum preservation, happen to be intrinsic to the conservative CA they represent. For monotone CA we give a characterization, and then show that they too are equivalent to the corresponding class of particle automata. Finally, we show how to determine, for a given CA and a given integer bb, whether its states admit a bb-neighborhood-dependent relabelling whose sum is conserved by the CA iteration; this can be used to uncover conservative principles and particle-like behavior underlying the dynamics of some CA. Complements at {\tt http://www.dim.uchile.cl/\verb' 'anmoreir/ncca}Comment: 38 pages, 2 figures. To appear in Theo. Comp. Sc. Several changes throughout the text; major change in section 4.

    On Factor Universality in Symbolic Spaces

    Get PDF
    The study of factoring relations between subshifts or cellular automata is central in symbolic dynamics. Besides, a notion of intrinsic universality for cellular automata based on an operation of rescaling is receiving more and more attention in the literature. In this paper, we propose to study the factoring relation up to rescalings, and ask for the existence of universal objects for that simulation relation. In classical simulations of a system S by a system T, the simulation takes place on a specific subset of configurations of T depending on S (this is the case for intrinsic universality). Our setting, however, asks for every configurations of T to have a meaningful interpretation in S. Despite this strong requirement, we show that there exists a cellular automaton able to simulate any other in a large class containing arbitrarily complex ones. We also consider the case of subshifts and, using arguments from recursion theory, we give negative results about the existence of universal objects in some classes

    Universalities in cellular automata; a (short) survey

    No full text
    This reading guide aims to provide the reader with an easy access to the study of universality in the field of cellular automata. To fulfill this goal, the approach taken here is organized in three parts: a detailled chronology of seminal papers, a discussion of the definition and main properties of universal cellular automata, and a broad bibliography
    corecore