14,562 research outputs found

    Universal Communication, Universal Graphs, and Graph Labeling

    Get PDF
    We introduce a communication model called universal SMP, in which Alice and Bob receive a function f belonging to a family ?, and inputs x and y. Alice and Bob use shared randomness to send a message to a third party who cannot see f, x, y, or the shared randomness, and must decide f(x,y). Our main application of universal SMP is to relate communication complexity to graph labeling, where the goal is to give a short label to each vertex in a graph, so that adjacency or other functions of two vertices x and y can be determined from the labels ?(x), ?(y). We give a universal SMP protocol using O(k^2) bits of communication for deciding whether two vertices have distance at most k in distributive lattices (generalizing the k-Hamming Distance problem in communication complexity), and explain how this implies a O(k^2 log n) labeling scheme for deciding dist(x,y) ? k on distributive lattices with size n; in contrast, we show that a universal SMP protocol for determining dist(x,y) ? 2 in modular lattices (a superset of distributive lattices) has super-constant ?(n^{1/4}) communication cost. On the other hand, we demonstrate that many graph families known to have efficient adjacency labeling schemes, such as trees, low-arboricity graphs, and planar graphs, admit constant-cost communication protocols for adjacency. Trees also have an O(k) protocol for deciding dist(x,y) ? k and planar graphs have an O(1) protocol for dist(x,y) ? 2, which implies a new O(log n) labeling scheme for the same problem on planar graphs

    Randomized Communication and Implicit Graph Representations

    Get PDF
    We study constant-cost randomized communication problems and relate them to implicit graph representations in structural graph theory. Specifically, constant-cost communication problems correspond to hereditary graph families that admit constant-size adjacency sketches, or equivalently constant-size probabilistic universal graphs (PUGs), and these graph families are a subset of families that admit adjacency labeling schemes of size O(log n), which are the subject of the well-studied implicit graph question (IGQ). We initiate the study of the hereditary graph families that admit constant-size PUGs, with the two (equivalent) goals of (1) understanding randomized constant-cost communication problems, and (2) understanding a probabilistic version of the IGQ. For each family F\mathcal F studied in this paper (including the monogenic bipartite families, product graphs, interval and permutation graphs, families of bounded twin-width, and others), it holds that the subfamilies HF\mathcal H \subseteq \mathcal F are either stable (in a sense relating to model theory), in which case they admit constant-size PUGs, or they are not stable, in which case they do not. The correspondence between communication problems and hereditary graph families allows for a new method of constructing adjacency labeling schemes. By this method, we show that the induced subgraphs of any Cartesian products are positive examples to the IGQ. We prove that this probabilistic construction cannot be derandomized by using an Equality oracle, i.e. the Equality oracle cannot simulate the k-Hamming Distance communication protocol. We also obtain constant-size sketches for deciding dist(x,y)k\mathsf{dist}(x, y) \le k for vertices xx, yy in any stable graph family with bounded twin-width. This generalizes to constant-size sketches for deciding first-order formulas over the same graphs

    Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

    Get PDF
    A graph UU is an induced universal graph for a family FF of graphs if every graph in FF is a vertex-induced subgraph of UU. For the family of all undirected graphs on nn vertices Alstrup, Kaplan, Thorup, and Zwick [STOC 2015] give an induced universal graph with O ⁣(2n/2)O\!\left(2^{n/2}\right) vertices, matching a lower bound by Moon [Proc. Glasgow Math. Assoc. 1965]. Let k=D/2k= \lceil D/2 \rceil. Improving asymptotically on previous results by Butler [Graphs and Combinatorics 2009] and Esperet, Arnaud and Ochem [IPL 2008], we give an induced universal graph with O ⁣(k2kk!nk)O\!\left(\frac{k2^k}{k!}n^k \right) vertices for the family of graphs with nn vertices of maximum degree DD. For constant DD, Butler gives a lower bound of Ω ⁣(nD/2)\Omega\!\left(n^{D/2}\right). For an odd constant D3D\geq 3, Esperet et al. and Alon and Capalbo [SODA 2008] give a graph with O ⁣(nk1D)O\!\left(n^{k-\frac{1}{D}}\right) vertices. Using their techniques for any (including constant) even values of DD gives asymptotically worse bounds than we present. For large DD, i.e. when D=Ω(log3n)D = \Omega\left(\log^3 n\right), the previous best upper bound was (nD/2)nO(1){n\choose\lceil D/2\rceil} n^{O(1)} due to Adjiashvili and Rotbart [ICALP 2014]. We give upper and lower bounds showing that the size is (n/2D/2)2±O~(D){\lfloor n/2\rfloor\choose\lfloor D/2 \rfloor}2^{\pm\tilde{O}\left(\sqrt{D}\right)}. Hence the optimal size is 2O~(D)2^{\tilde{O}(D)} and our construction is within a factor of 2O~(D)2^{\tilde{O}\left(\sqrt{D}\right)} from this. The previous results were larger by at least a factor of 2Ω(D)2^{\Omega(D)}. As a part of the above, proving a conjecture by Esperet et al., we construct an induced universal graph with 2n12n-1 vertices for the family of graphs with max degree 22. In addition, we give results for acyclic graphs with max degree 22 and cycle graphs. Our results imply the first labeling schemes that for any DD are at most o(n)o(n) bits from optimal

    Near-optimal adjacency labeling scheme for power-law graphs

    Get PDF
    An adjacency labeling scheme is a method that assigns labels to the vertices of a graph such that adjacency between vertices can be inferred directly from the assigned label, without using a centralized data structure. We devise adjacency labeling schemes for the family of power-law graphs. This family that has been used to model many types of networks, e.g. the Internet AS-level graph. Furthermore, we prove an almost matching lower bound for this family. We also provide an asymptotically near- optimal labeling scheme for sparse graphs. Finally, we validate the efficiency of our labeling scheme by an experimental evaluation using both synthetic data and real-world networks of up to hundreds of thousands of vertices

    Adjacency labeling schemes and induced-universal graphs

    Full text link
    We describe a way of assigning labels to the vertices of any undirected graph on up to nn vertices, each composed of n/2+O(1)n/2+O(1) bits, such that given the labels of two vertices, and no other information regarding the graph, it is possible to decide whether or not the vertices are adjacent in the graph. This is optimal, up to an additive constant, and constitutes the first improvement in almost 50 years of an n/2+O(logn)n/2+O(\log n) bound of Moon. As a consequence, we obtain an induced-universal graph for nn-vertex graphs containing only O(2n/2)O(2^{n/2}) vertices, which is optimal up to a multiplicative constant, solving an open problem of Vizing from 1968. We obtain similar tight results for directed graphs, tournaments and bipartite graphs

    Labeling Schemes for Bounded Degree Graphs

    Full text link
    We investigate adjacency labeling schemes for graphs of bounded degree Δ=O(1)\Delta = O(1). In particular, we present an optimal (up to an additive constant) logn+O(1)\log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 10], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 02]. We also provide improved labeling schemes for bounded degree planar graphs. Finally, we use combinatorial number systems and present an improved adjacency labeling schemes for graphs of bounded degree Δ\Delta with (e+1)n<Δn/5(e+1)\sqrt{n} < \Delta \leq n/5

    Space-Time Tradeoffs for Distributed Verification

    Full text link
    Verifying that a network configuration satisfies a given boolean predicate is a fundamental problem in distributed computing. Many variations of this problem have been studied, for example, in the context of proof labeling schemes (PLS), locally checkable proofs (LCP), and non-deterministic local decision (NLD). In all of these contexts, verification time is assumed to be constant. Korman, Kutten and Masuzawa [PODC 2011] presented a proof-labeling scheme for MST, with poly-logarithmic verification time, and logarithmic memory at each vertex. In this paper we introduce the notion of a tt-PLS, which allows the verification procedure to run for super-constant time. Our work analyzes the tradeoffs of tt-PLS between time, label size, message length, and computation space. We construct a universal tt-PLS and prove that it uses the same amount of total communication as a known one-round universal PLS, and tt factor smaller labels. In addition, we provide a general technique to prove lower bounds for space-time tradeoffs of tt-PLS. We use this technique to show an optimal tradeoff for testing that a network is acyclic (cycle free). Our optimal tt-PLS for acyclicity uses label size and computation space O((logn)/t)O((\log n)/t). We further describe a recursive O(logn)O(\log^* n) space verifier for acyclicity which does not assume previous knowledge of the run-time tt.Comment: Pre-proceedings version of paper presented at the 24th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2017

    Distributed Graph Automata and Verification of Distributed Algorithms

    Full text link
    Combining ideas from distributed algorithms and alternating automata, we introduce a new class of finite graph automata that recognize precisely the languages of finite graphs definable in monadic second-order logic. By restricting transitions to be nondeterministic or deterministic, we also obtain two strictly weaker variants of our automata for which the emptiness problem is decidable. As an application, we suggest how suitable graph automata might be useful in formal verification of distributed algorithms, using Floyd-Hoare logic.Comment: 26 pages, 6 figures, includes a condensed version of the author's Master's thesis arXiv:1404.6503. (This version of the article (v2) is identical to the previous one (v1), except for minor changes in phrasing.

    Sublinear Distance Labeling

    Get PDF
    A distance labeling scheme labels the nn nodes of a graph with binary strings such that, given the labels of any two nodes, one can determine the distance in the graph between the two nodes by looking only at the labels. A DD-preserving distance labeling scheme only returns precise distances between pairs of nodes that are at distance at least DD from each other. In this paper we consider distance labeling schemes for the classical case of unweighted graphs with both directed and undirected edges. We present a O(nDlog2D)O(\frac{n}{D}\log^2 D) bit DD-preserving distance labeling scheme, improving the previous bound by Bollob\'as et. al. [SIAM J. Discrete Math. 2005]. We also give an almost matching lower bound of Ω(nD)\Omega(\frac{n}{D}). With our DD-preserving distance labeling scheme as a building block, we additionally achieve the following results: 1. We present the first distance labeling scheme of size o(n)o(n) for sparse graphs (and hence bounded degree graphs). This addresses an open problem by Gavoille et. al. [J. Algo. 2004], hereby separating the complexity from distance labeling in general graphs which require Ω(n)\Omega(n) bits, Moon [Proc. of Glasgow Math. Association 1965]. 2. For approximate rr-additive labeling schemes, that return distances within an additive error of rr we show a scheme of size O(nrpolylog(rlogn)logn)O\left ( \frac{n}{r} \cdot\frac{\operatorname{polylog} (r\log n)}{\log n} \right ) for r2r \ge 2. This improves on the current best bound of O(nr)O\left(\frac{n}{r}\right) by Alstrup et. al. [SODA 2016] for sub-polynomial rr, and is a generalization of a result by Gawrychowski et al. [arXiv preprint 2015] who showed this for r=2r=2.Comment: A preliminary version of this paper appeared at ESA'1
    corecore