668 research outputs found

    Two Universality Properties Associated with the Monkey Model of Zipf's Law

    Full text link
    The distribution of word probabilities in the monkey model of Zipf's law is associated with two universality properties: (1) the power law exponent converges strongly to −1-1 as the alphabet size increases and the letter probabilities are specified as the spacings from a random division of the unit interval for any distribution with a bounded density function on [0,1][0,1]; and (2), on a logarithmic scale the version of the model with a finite word length cutoff and unequal letter probabilities is approximately normally distributed in the part of the distribution away from the tails. The first property is proved using a remarkably general limit theorem for the logarithm of sample spacings from Shao and Hahn, and the second property follows from Anscombe's central limit theorem for a random number of i.i.d. random variables. The finite word length model leads to a hybrid Zipf-lognormal mixture distribution closely related to work in other areas.Comment: 14 pages, 3 figure

    Emergence of Zipf's Law in the Evolution of Communication

    Get PDF
    Zipf's law seems to be ubiquitous in human languages and appears to be a universal property of complex communicating systems. Following the early proposal made by Zipf concerning the presence of a tension between the efforts of speaker and hearer in a communication system, we introduce evolution by means of a variational approach to the problem based on Kullback's Minimum Discrimination of Information Principle. Therefore, using a formalism fully embedded in the framework of information theory, we demonstrate that Zipf's law is the only expected outcome of an evolving, communicative system under a rigorous definition of the communicative tension described by Zipf.Comment: 7 pages, 2 figure
    • …
    corecore