8,640 research outputs found

    A Universal Scheme for Wyner–Ziv Coding of Discrete Sources

    Get PDF
    We consider the Wyner–Ziv (WZ) problem of lossy compression where the decompressor observes a noisy version of the source, whose statistics are unknown. A new family of WZ coding algorithms is proposed and their universal optimality is proven. Compression consists of sliding-window processing followed by Lempel–Ziv (LZ) compression, while the decompressor is based on a modification of the discrete universal denoiser (DUDE) algorithm to take advantage of side information. The new algorithms not only universally attain the fundamental limits, but also suggest a paradigm for practical WZ coding. The effectiveness of our approach is illustrated with experiments on binary images, and English text using a low complexity algorithm motivated by our class of universally optimal WZ codes

    How to Achieve the Capacity of Asymmetric Channels

    Full text link
    We survey coding techniques that enable reliable transmission at rates that approach the capacity of an arbitrary discrete memoryless channel. In particular, we take the point of view of modern coding theory and discuss how recent advances in coding for symmetric channels help provide more efficient solutions for the asymmetric case. We consider, in more detail, three basic coding paradigms. The first one is Gallager's scheme that consists of concatenating a linear code with a non-linear mapping so that the input distribution can be appropriately shaped. We explicitly show that both polar codes and spatially coupled codes can be employed in this scenario. Furthermore, we derive a scaling law between the gap to capacity, the cardinality of the input and output alphabets, and the required size of the mapper. The second one is an integrated scheme in which the code is used both for source coding, in order to create codewords distributed according to the capacity-achieving input distribution, and for channel coding, in order to provide error protection. Such a technique has been recently introduced by Honda and Yamamoto in the context of polar codes, and we show how to apply it also to the design of sparse graph codes. The third paradigm is based on an idea of B\"ocherer and Mathar, and separates the two tasks of source coding and channel coding by a chaining construction that binds together several codewords. We present conditions for the source code and the channel code, and we describe how to combine any source code with any channel code that fulfill those conditions, in order to provide capacity-achieving schemes for asymmetric channels. In particular, we show that polar codes, spatially coupled codes, and homophonic codes are suitable as basic building blocks of the proposed coding strategy.Comment: 32 pages, 4 figures, presented in part at Allerton'14 and published in IEEE Trans. Inform. Theor

    Universal coding for transmission of private information

    Full text link
    We consider the scenario in which Alice transmits private classical messages to Bob via a classical-quantum channel, part of whose output is intercepted by an eavesdropper, Eve. We prove the existence of a universal coding scheme under which Alice's messages can be inferred correctly by Bob, and yet Eve learns nothing about them. The code is universal in the sense that it does not depend on specific knowledge of the channel. Prior knowledge of the probability distribution on the input alphabet of the channel, and bounds on the corresponding Holevo quantities of the output ensembles at Bob's and Eve's end suffice.Comment: 31 pages, no figures. Published versio

    Zero-error channel capacity and simulation assisted by non-local correlations

    Full text link
    Shannon's theory of zero-error communication is re-examined in the broader setting of using one classical channel to simulate another exactly, and in the presence of various resources that are all classes of non-signalling correlations: Shared randomness, shared entanglement and arbitrary non-signalling correlations. Specifically, when the channel being simulated is noiseless, this reduces to the zero-error capacity of the channel, assisted by the various classes of non-signalling correlations. When the resource channel is noiseless, it results in the "reverse" problem of simulating a noisy channel exactly by a noiseless one, assisted by correlations. In both cases, 'one-shot' separations between the power of the different assisting correlations are exhibited. The most striking result of this kind is that entanglement can assist in zero-error communication, in stark contrast to the standard setting of communicaton with asymptotically vanishing error in which entanglement does not help at all. In the asymptotic case, shared randomness is shown to be just as powerful as arbitrary non-signalling correlations for noisy channel simulation, which is not true for the asymptotic zero-error capacities. For assistance by arbitrary non-signalling correlations, linear programming formulas for capacity and simulation are derived, the former being equal (for channels with non-zero unassisted capacity) to the feedback-assisted zero-error capacity originally derived by Shannon to upper bound the unassisted zero-error capacity. Finally, a kind of reversibility between non-signalling-assisted capacity and simulation is observed, mirroring the famous "reverse Shannon theorem".Comment: 18 pages, 1 figure. Small changes to text in v2. Removed an unnecessarily strong requirement in the premise of Theorem 1

    Competitive minimax universal decoding for several ensembles of random codes

    Full text link
    Universally achievable error exponents pertaining to certain families of channels (most notably, discrete memoryless channels (DMC's)), and various ensembles of random codes, are studied by combining the competitive minimax approach, proposed by Feder and Merhav, with Chernoff bound and Gallager's techniques for the analysis of error exponents. In particular, we derive a single--letter expression for the largest, universally achievable fraction ξ\xi of the optimum error exponent pertaining to the optimum ML decoding. Moreover, a simpler single--letter expression for a lower bound to ξ\xi is presented. To demonstrate the tightness of this lower bound, we use it to show that ξ=1\xi=1, for the binary symmetric channel (BSC), when the random coding distribution is uniform over: (i) all codes (of a given rate), and (ii) all linear codes, in agreement with well--known results. We also show that ξ=1\xi=1 for the uniform ensemble of systematic linear codes, and for that of time--varying convolutional codes in the bit-error--rate sense. For the latter case, we also show how the corresponding universal decoder can be efficiently implemented using a slightly modified version of the Viterbi algorithm which em employs two trellises.Comment: 41 pages; submitted to IEEE Transactions on Information Theor
    corecore