5,654 research outputs found

    Spectral MLE: Top-KK Rank Aggregation from Pairwise Comparisons

    Full text link
    This paper explores the preference-based top-KK rank aggregation problem. Suppose that a collection of items is repeatedly compared in pairs, and one wishes to recover a consistent ordering that emphasizes the top-KK ranked items, based on partially revealed preferences. We focus on the Bradley-Terry-Luce (BTL) model that postulates a set of latent preference scores underlying all items, where the odds of paired comparisons depend only on the relative scores of the items involved. We characterize the minimax limits on identifiability of top-KK ranked items, in the presence of random and non-adaptive sampling. Our results highlight a separation measure that quantifies the gap of preference scores between the KthK^{\text{th}} and (K+1)th(K+1)^{\text{th}} ranked items. The minimum sample complexity required for reliable top-KK ranking scales inversely with the separation measure irrespective of other preference distribution metrics. To approach this minimax limit, we propose a nearly linear-time ranking scheme, called \emph{Spectral MLE}, that returns the indices of the top-KK items in accordance to a careful score estimate. In a nutshell, Spectral MLE starts with an initial score estimate with minimal squared loss (obtained via a spectral method), and then successively refines each component with the assistance of coordinate-wise MLEs. Encouragingly, Spectral MLE allows perfect top-KK item identification under minimal sample complexity. The practical applicability of Spectral MLE is further corroborated by numerical experiments.Comment: accepted to International Conference on Machine Learning (ICML), 201

    Intermittency of surface layer wind velocity series in the mesoscale range

    Full text link
    We study various time series of surface layer wind velocity at different locations and provide evidences for the intermittent nature of the wind fluctuations in mesoscale range. By means of the magnitude covariance analysis, which is shown to be a more efficient tool to study intermittency than classical scaling analysis, we find that all wind series exhibit similar features than those observed for laboratory turbulence. Our findings suggest the existence of a "universal" cascade mechanism associated with the energy transfer between synoptic motions and turbulent microscales in the atmospheric boundary layer.Comment: 6 figure

    Answering Range Queries Under Local Differential Privacy

    Full text link
    Counting the fraction of a population having an input within a specified interval i.e. a \emph{range query}, is a fundamental data analysis primitive. Range queries can also be used to compute other interesting statistics such as \emph{quantiles}, and to build prediction models. However, frequently the data is subject to privacy concerns when it is drawn from individuals, and relates for example to their financial, health, religious or political status. In this paper, we introduce and analyze methods to support range queries under the local variant of differential privacy, an emerging standard for privacy-preserving data analysis. The local model requires that each user releases a noisy view of her private data under a privacy guarantee. While many works address the problem of range queries in the trusted aggregator setting, this problem has not been addressed specifically under untrusted aggregation (local DP) model even though many primitives have been developed recently for estimating a discrete distribution. We describe and analyze two classes of approaches for range queries, based on hierarchical histograms and the Haar wavelet transform. We show that both have strong theoretical accuracy guarantees on variance. In practice, both methods are fast and require minimal computation and communication resources. Our experiments show that the wavelet approach is most accurate in high privacy settings, while the hierarchical approach dominates for weaker privacy requirements

    Graph Neural Networks Exponentially Lose Expressive Power for Node Classification

    Full text link
    Graph Neural Networks (graph NNs) are a promising deep learning approach for analyzing graph-structured data. However, it is known that they do not improve (or sometimes worsen) their predictive performance as we pile up many layers and add non-lineality. To tackle this problem, we investigate the expressive power of graph NNs via their asymptotic behaviors as the layer size tends to infinity. Our strategy is to generalize the forward propagation of a Graph Convolutional Network (GCN), which is a popular graph NN variant, as a specific dynamical system. In the case of a GCN, we show that when its weights satisfy the conditions determined by the spectra of the (augmented) normalized Laplacian, its output exponentially approaches the set of signals that carry information of the connected components and node degrees only for distinguishing nodes. Our theory enables us to relate the expressive power of GCNs with the topological information of the underlying graphs inherent in the graph spectra. To demonstrate this, we characterize the asymptotic behavior of GCNs on the Erd\H{o}s -- R\'{e}nyi graph. We show that when the Erd\H{o}s -- R\'{e}nyi graph is sufficiently dense and large, a broad range of GCNs on it suffers from the "information loss" in the limit of infinite layers with high probability. Based on the theory, we provide a principled guideline for weight normalization of graph NNs. We experimentally confirm that the proposed weight scaling enhances the predictive performance of GCNs in real data. Code is available at https://github.com/delta2323/gnn-asymptotics.Comment: 9 pages, Supplemental material 28 pages. Accepted in International Conference on Learning Representations (ICLR) 202

    Democracy under uncertainty: The ‘wisdom of crowds’ and the free-rider problem in group decision making

    Get PDF
    We introduce a game theory model of individual decisions to cooperate by contributing personal resources to group decisions versus by free-riding on the contributions of other members. In contrast to most public-goods games that assume group returns are linear in individual contributions, the present model assumes decreasing marginal group production as a function of aggregate individual contributions. This diminishing marginal returns assumption is more realistic and generates starkly different predictions compared to the linear model. One important implication is that, under most conditions, there exist equilibria where some, but not all members of a group contribute, even with completely self-interested motives. An agent-based simulation confirms the individual and group advantages of the equilibria in which behavioral asymmetry emerges from a game structure that is a priori perfectly symmetric for all agents (all agents have the same payoff function and action space, but take different actions in equilibria). And a behavioral experiment demonstrates that cooperators and free-riders coexist in a stable manner in groups performing with the non-linear production function. A collateral result demonstrates that, compared to a ―dictatorial‖ decision scheme guided by the best member in a group, the majority-plurality decision rules can pool information effectively and produce greater individual net welfare at equilibrium, even if free-riding is not sanctioned. This is an original proof that cooperation in ad hoc decision-making groups can be understood in terms of self-interested motivations and that, despite the free-rider problem, majority-plurality decision rules can function robustly as simple, efficient social decision heuristics.group decision making under uncertainty, free-rider problem, majority-plurality rules, marginally-diminishing group returns, evolutionary games, behavioral experiment

    Optimizing Locally Differentially Private Protocols

    Full text link
    Protocols satisfying Local Differential Privacy (LDP) enable parties to collect aggregate information about a population while protecting each user's privacy, without relying on a trusted third party. LDP protocols (such as Google's RAPPOR) have been deployed in real-world scenarios. In these protocols, a user encodes his private information and perturbs the encoded value locally before sending it to an aggregator, who combines values that users contribute to infer statistics about the population. In this paper, we introduce a framework that generalizes several LDP protocols proposed in the literature. Our framework yields a simple and fast aggregation algorithm, whose accuracy can be precisely analyzed. Our in-depth analysis enables us to choose optimal parameters, resulting in two new protocols (i.e., Optimized Unary Encoding and Optimized Local Hashing) that provide better utility than protocols previously proposed. We present precise conditions for when each proposed protocol should be used, and perform experiments that demonstrate the advantage of our proposed protocols

    Power-law scaling in dimension-to-biomass relationship of fish schools

    Full text link
    Motivated by the finding that there is some biological universality in the relationship between school geometry and school biomass of various pelagic fishes in various conditions, I here establish a scaling law for school dimensions: the school diameter increases as a power-law function of school biomass. The power-law exponent is extracted through the data collapse, and is close to 3/5. This value of the exponent implies that the mean packing density decreases as the school biomass increases, and the packing structure displays a mass-fractal dimension of 5/3. By exploiting an analogy between school geometry and polymer chain statistics, I examine the behavioral algorithm governing the swollen conformation of large-sized schools of pelagics, and I explain the value of the exponent.Comment: 25 pages, 6 figures, to appear in J. Theor. Bio

    Optimization Methods for Large-Scale Machine Learning

    Full text link
    This paper provides a review and commentary on the past, present, and future of numerical optimization algorithms in the context of machine learning applications. Through case studies on text classification and the training of deep neural networks, we discuss how optimization problems arise in machine learning and what makes them challenging. A major theme of our study is that large-scale machine learning represents a distinctive setting in which the stochastic gradient (SG) method has traditionally played a central role while conventional gradient-based nonlinear optimization techniques typically falter. Based on this viewpoint, we present a comprehensive theory of a straightforward, yet versatile SG algorithm, discuss its practical behavior, and highlight opportunities for designing algorithms with improved performance. This leads to a discussion about the next generation of optimization methods for large-scale machine learning, including an investigation of two main streams of research on techniques that diminish noise in the stochastic directions and methods that make use of second-order derivative approximations

    Learning More Universal Representations for Transfer-Learning

    Full text link
    A representation is supposed universal if it encodes any element of the visual world (e.g., objects, scenes) in any configuration (e.g., scale, context). While not expecting pure universal representations, the goal in the literature is to improve the universality level, starting from a representation with a certain level. To do so, the state-of-the-art consists in learning CNN-based representations on a diversified training problem (e.g., ImageNet modified by adding annotated data). While it effectively increases universality, such approach still requires a large amount of efforts to satisfy the needs in annotated data. In this work, we propose two methods to improve universality, but pay special attention to limit the need of annotated data. We also propose a unified framework of the methods based on the diversifying of the training problem. Finally, to better match Atkinson's cognitive study about universal human representations, we proposed to rely on the transfer-learning scheme as well as a new metric to evaluate universality. This latter, aims us to demonstrates the interest of our methods on 10 target-problems, relating to the classification task and a variety of visual domains.Comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence

    Full text link
    Data in the form of pairwise comparisons arises in many domains, including preference elicitation, sporting competitions, and peer grading among others. We consider parametric ordinal models for such pairwise comparison data involving a latent vector w∗∈Rdw^* \in \mathbb{R}^d that represents the "qualities" of the dd items being compared; this class of models includes the two most widely used parametric models--the Bradley-Terry-Luce (BTL) and the Thurstone models. Working within a standard minimax framework, we provide tight upper and lower bounds on the optimal error in estimating the quality score vector w∗w^* under this class of models. The bounds depend on the topology of the comparison graph induced by the subset of pairs being compared via its Laplacian spectrum. Thus, in settings where the subset of pairs may be chosen, our results provide principled guidelines for making this choice. Finally, we compare these error rates to those under cardinal measurement models and show that the error rates in the ordinal and cardinal settings have identical scalings apart from constant pre-factors.Comment: 39 pages, 5 figures. Significant extension of arXiv:1406.661
    • …
    corecore