513 research outputs found

    On Statistical QoS Provisioning for Smart Grid

    Get PDF
    Current power system is in the transition from traditional power grid to Smart Grid. A key advantage of Smart Grid is its integration of advanced communication technologies, which can provide real-time system-wide two-way information links. Since the communication system and power system are deeply coupled within the Smart Grid system, it makes Quality of Service (QoS) performance analysis much more complex than that in either system alone. In order to address this challenge, the effective rate theory is studied and extended in this thesis, where a new H transform based framework is proposed. Various scenarios are investigated using the new proposed effective rate framework, including both independent and correlated fading channels. With the effective rate as a connection between the communication system and the power system, an analysis of the power grid observability under communication constraints is performed. Case studies show that the effective rate provides a cross layer analytical framework within the communication system, while its statistical characterisation of the communication delay has the potential to be applied as a general coupling point between the communication system and the power system, especially when real-time applications are considered. Besides the theoretical QoS performance analysis within Smart Grid, a new Software Defined Smart Grid testbed is proposed in this thesis. This testbed provides a versatile evaluation and development environment for Smart Grid QoS performance studies. It exploits the Real Time Digital Simulator (RTDS) to emulate different power grid configurations and the Software Defined Radio (SDR) environment to implement the communication system. A data acquisition and actuator module is developed, which provides an emulation of various Intelligent Electronic Devices (IEDs). The implemented prototype demonstrates that the proposed testbed has the potential to evaluate real time Smart Grid applications such as real time voltage stability control

    An adaptive framework for end-to-end quality of service management

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Slice-Aware Radio Resource Management for Future Mobile Networks

    Get PDF
    The concept of network slicing has been introduced in order to enable mobile networks to accommodate multiple heterogeneous use cases that are anticipated to be served within a single physical infrastructure. The slices are end-to-end virtual networks that share the resources of a physical network, spanning the core network (CN) and the radio access network (RAN). RAN slicing can be more challenging than CN slicing as the former deals with the distribution of radio resources, where the capacity is not constant over time and is hard to extend. The main challenge in RAN slicing is to simultaneously improve multiplexing gains while assuring enough isolation between slices, meaning one of the slices cannot negatively influence other slices. In this work, a flexible and configurable framework for RAN slicing is provided, where diverse requirements of slices are taken into account, and slice management algorithms adjust the control parameters of different radio resource management (RRM) mechanisms to satisfy the slices' service level agreements (SLAs). A new entity that translates the key performance indicator (KPI) targets of the SLAs to the control parameters is introduced and is called RAN slice orchestrator. Diverse algorithms governing this entity are introduced, which range from heuristics-based to model-free methods. Besides, a protection mechanism is constructed to prevent the negative influences of slices on each other's performances. The simulation-based analysis demonstrates the feasibility of slicing the RAN with multiplexing gains and slice isolation

    Network Flow Optimization Using Reinforcement Learning

    Get PDF

    Probabilistic data-driven methods for forecasting, identification and control

    Get PDF
    This dissertation presents contributions mainly in three different fields: system identification, probabilistic forecasting and stochastic control. Thanks to the concept of dissimilarity and by defining an appropriate dissimilarity function, it is shown that a family of predictors can be obtained. First, a predictor to compute nominal forecastings of a time-series or a dynamical system is presented. The effectiveness of the predictor is shown by means of a numerical example, where daily predictions of a stock index are computed. The obtained results turn out to be better than those obtained with popular machine learning techniques like Neural Networks. Similarly, the aforementioned dissimilarity function can be used to compute conditioned probability distributions. By means of the obtained distributions, interval predictions can be made by using the concept of quantiles. However, in order to do that, it is necessary to integrate the distribution for all the possible values of the output. As this numerical integration process is computationally expensive, an alternate method bypassing the computation of the probability distribution is also proposed. Not only is computationally cheaper but it also allows to compute prediction regions, which are the multivariate version of the interval predictions. Both methods present better results than other baseline approaches in a set of examples, including a stock forecasting example and the prediction of the Lorenz attractor. Furthermore, new methods to obtain models of nonlinear systems by means of input-output data are proposed. Two different model approaches are presented: a local data approach and a kernel-based approach. A kalman filter can be added to improve the quality of the predictions. It is shown that the forecasting performance of the proposed models is better than other machine learning methods in several examples, such as the forecasting of the sunspot number and the R¨ossler attractor. Also, as these models are suitable for Model Predictive Control (MPC), new MPC formulations are proposed. Thanks to the distinctive features of the proposed models, the nonlinear MPC problem can be posed as a simple quadratic programming problem. Finally, by means of a simulation example and a real experiment, it is shown that the controller performs adequately. On the other hand, in the field of stochastic control, several methods to bound the constraint violation rate of any controller under the presence of bounded or unbounded disturbances are presented. These can be used, for example, to tune some hyperparameters of the controller. Some simulation examples are proposed in order to show the functioning of the algorithms. One of these examples considers the management of a data center. Here, an energy-efficient MPC-inspired policy is developed in order to reduce the electricity consumption while keeping the quality of service at acceptable levels

    Adaptive performance optimization for large-scale traffic control systems

    Get PDF
    In this paper, we study the problem of optimizing (fine-tuning) the design parameters of large-scale traffic control systems that are composed of distinct and mutually interacting modules. This problem usually requires a considerable amount of human effort and time to devote to the successful deployment and operation of traffic control systems due to the lack of an automated well-established systematic approach. We investigate the adaptive fine-tuning algorithm for determining the set of design parameters of two distinct mutually interacting modules of the traffic-responsive urban control (TUC) strategy, i.e., split and cycle, for the large-scale urban road network of the city of Chania, Greece. Simulation results are presented, demonstrating that the network performance in terms of the daily mean speed, which is attained by the proposed adaptive optimization methodology, is significantly better than the original TUC system in the case in which the aforementioned design parameters are manually fine-tuned to virtual perfection by the system operators
    corecore