175 research outputs found

    Learning An Invariant Speech Representation

    Get PDF
    Recognition of speech, and in particular the ability to generalize and learn from small sets of labelled examples like humans do, depends on an appropriate representation of the acoustic input. We formulate the problem of finding robust speech features for supervised learning with small sample complexity as a problem of learning representations of the signal that are maximally invariant to intraclass transformations and deformations. We propose an extension of a theory for unsupervised learning of invariant visual representations to the auditory domain and empirically evaluate its validity for voiced speech sound classification. Our version of the theory requires the memory-based, unsupervised storage of acoustic templates -- such as specific phones or words -- together with all the transformations of each that normally occur. A quasi-invariant representation for a speech segment can be obtained by projecting it to each template orbit, i.e., the set of transformed signals, and computing the associated one-dimensional empirical probability distributions. The computations can be performed by modules of filtering and pooling, and extended to hierarchical architectures. In this paper, we apply a single-layer, multicomponent representation for phonemes and demonstrate improved accuracy and decreased sample complexity for vowel classification compared to standard spectral, cepstral and perceptual features.Comment: CBMM Memo No. 022, 5 pages, 2 figure

    Symmetry Regularization

    Get PDF
    The properties of a representation, such as smoothness, adaptability, generality, equivari- ance/invariance, depend on restrictions imposed during learning. In this paper, we propose using data symmetries, in the sense of equivalences under transformations, as a means for learning symmetry- adapted representations, i.e., representations that are equivariant to transformations in the original space. We provide a sufficient condition to enforce the representation, for example the weights of a neural network layer or the atoms of a dictionary, to have a group structure and specifically the group structure in an unlabeled training set. By reducing the analysis of generic group symmetries to per- mutation symmetries, we devise an analytic expression for a regularization scheme and a permutation invariant metric on the representation space. Our work provides a proof of concept on why and how to learn equivariant representations, without explicit knowledge of the underlying symmetries in the data.This material is based upon work supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216

    General E(2)E(2)-Equivariant Steerable CNNs

    Get PDF
    The big empirical success of group equivariant networks has led in recent years to the sprouting of a great variety of equivariant network architectures. A particular focus has thereby been on rotation and reflection equivariant CNNs for planar images. Here we give a general description of E(2)E(2)-equivariant convolutions in the framework of Steerable CNNs. The theory of Steerable CNNs thereby yields constraints on the convolution kernels which depend on group representations describing the transformation laws of feature spaces. We show that these constraints for arbitrary group representations can be reduced to constraints under irreducible representations. A general solution of the kernel space constraint is given for arbitrary representations of the Euclidean group E(2)E(2) and its subgroups. We implement a wide range of previously proposed and entirely new equivariant network architectures and extensively compare their performances. E(2)E(2)-steerable convolutions are further shown to yield remarkable gains on CIFAR-10, CIFAR-100 and STL-10 when used as a drop-in replacement for non-equivariant convolutions.Comment: Conference on Neural Information Processing Systems (NeurIPS), 201

    Support matrix machine: A review

    Full text link
    Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. The SMM method preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class imbalance, and multi-class classification models. We also analyze the applications of the SMM model and conclude the article by outlining potential future research avenues and possibilities that may motivate academics to advance the SMM algorithm

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page
    • …
    corecore