1,144 research outputs found

    First-Order Logic Theorem Proving and Model Building via Approximation and Instantiation

    Full text link
    In this paper we consider first-order logic theorem proving and model building via approximation and instantiation. Given a clause set we propose its approximation into a simplified clause set where satisfiability is decidable. The approximation extends the signature and preserves unsatisfiability: if the simplified clause set is satisfiable in some model, so is the original clause set in the same model interpreted in the original signature. A refutation generated by a decision procedure on the simplified clause set can then either be lifted to a refutation in the original clause set, or it guides a refinement excluding the previously found unliftable refutation. This way the approach is refutationally complete. We do not step-wise lift refutations but conflicting cores, finite unsatisfiable clause sets representing at least one refutation. The approach is dual to many existing approaches in the literature because our approximation preserves unsatisfiability

    Analyzing Satisfiability and Refutability in Selected Constraint Systems

    Get PDF
    This dissertation is concerned with the satisfiability and refutability problems for several constraint systems. We examine both Boolean constraint systems, in which each variable is limited to the values true and false, and polyhedral constraint systems, in which each variable is limited to the set of real numbers R in the case of linear polyhedral systems or the set of integers Z in the case of integer polyhedral systems. An important aspect of our research is that we focus on providing certificates. That is, we provide satisfying assignments or easily checkable proofs of infeasibility depending on whether the instance is feasible or not. Providing easily checkable certificates has become a much sought after feature in algorithms, especially in light of spectacular failures in the implementations of some well-known algorithms. There exist a number of problems in the constraint-solving domain for which efficient algorithms have been proposed, but which lack a certifying counterpart. When examining Boolean constraint systems, we specifically look at systems of 2-CNF clauses and systems of Horn clauses. When examining polyhedral constraint systems, we specifically look at systems of difference constraints, systems of UTVPI constraints, and systems of Horn constraints. For each examined system, we determine several properties of general refutations and determine the complexity of finding restricted refutations. These restricted forms of refutation include read-once refutations, in which each constraint can be used at most once; literal-once refutations, in which for each literal at most one constraint containing that literal can be used; and unit refutations, in which each step of the refutation must use a constraint containing exactly one literal. The advantage of read-once refutations is that they are guaranteed to be short. Thus, while not every constraint system has a read-once refutation, the small size of the refutation guarantees easy checkability

    New Results on Cutting Plane Proofs for Horn Constraint Systems

    Get PDF
    In this paper, we investigate properties of cutting plane based refutations for a class of integer programs called Horn constraint systems (HCS). Briefly, a system of linear inequalities A * x >= b is called a Horn constraint system, if each entry in A belongs to the set {0,1,-1} and furthermore there is at most one positive entry per row. Our focus is on deriving refutations i.e., proofs of unsatisfiability of such programs using cutting planes as a proof system. We also look at several properties of these refutations. Horn constraint systems can be considered as a more general form of propositional Horn formulas, i.e., CNF formulas with at most one positive literal per clause. Cutting plane calculus (CP) is a well-known calculus for deciding the unsatisfiability of propositional CNF formulas and integer programs. Usually, CP consists of a pair of inference rules. These are called the addition rule (ADD) and the division rule (DIV). In this paper, we show that cutting plane calculus is still complete for Horn constraints when every intermediate constraint is required to be Horn. We also investigate the lengths of cutting plane proofs for Horn constraint systems

    Hardness measures and resolution lower bounds

    Full text link
    Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this report we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. We also extend these measures to all clause-sets (possibly satisfiable).Comment: 43 pages, preliminary version (yet the application part is only sketched, with proofs missing

    MaxSAT Resolution and Subcube Sums

    Full text link
    We study the MaxRes rule in the context of certifying unsatisfiability. We show that it can be exponentially more powerful than tree-like resolution, and when augmented with weakening (the system MaxResW), p-simulates tree-like resolution. In devising a lower bound technique specific to MaxRes (and not merely inheriting lower bounds from Res), we define a new proof system called the SubCubeSums proof system. This system, which p-simulates MaxResW, can be viewed as a special case of the semialgebraic Sherali-Adams proof system. In expressivity, it is the integral restriction of conical juntas studied in the contexts of communication complexity and extension complexity. We show that it is not simulated by Res. Using a proof technique qualitatively different from the lower bounds that MaxResW inherits from Res, we show that Tseitin contradictions on expander graphs are hard to refute in SubCubeSums. We also establish a lower bound technique via lifting: for formulas requiring large degree in SubCubeSums, their XOR-ification requires large size in SubCubeSums

    The specialization problem and the completeness of unfolding

    Get PDF
    We discuss the problem of specializing a definite program with respect to sets of positive and negative examples, following Bostrom and Idestam-Almquist. This problem is very relevant in the field of inductive learning. First we show that there exist sets of examples that have no correct program, i.e., no program which implies all positive and no negative examples. Hence it only makes sense to talk about specialization problems for which a solution (a correct program) exists. To solve such problems, we first introduce UD1-specialization, based upon the transformation rule unfolding. We show UD1-specialization is incomplete - some solvable specialization problems do not have a UD1-specialization as solution - and generalize it to the stronger UD2-specialization. UD2 also turns out to be incomplete. An analysis of program specialization, using the subsumption theorem for SLD-resolution, shows the reason for this incompleteness. Based on that analysis, we then define UDS-specialization (a generalization of UD2-specialization), and prove that any specialization problem has a UDS-specialization as a solution. We also discuss the relationship between this specialization technique, and the generalization technique based on inverse resolution. Finally, we go into several more implementational matters, which outline an interesting topic for future research

    A Finite-Model-Theoretic View on Propositional Proof Complexity

    Full text link
    We establish new, and surprisingly tight, connections between propositional proof complexity and finite model theory. Specifically, we show that the power of several propositional proof systems, such as Horn resolution, bounded-width resolution, and the polynomial calculus of bounded degree, can be characterised in a precise sense by variants of fixed-point logics that are of fundamental importance in descriptive complexity theory. Our main results are that Horn resolution has the same expressive power as least fixed-point logic, that bounded-width resolution captures existential least fixed-point logic, and that the polynomial calculus with bounded degree over the rationals solves precisely the problems definable in fixed-point logic with counting. By exploring these connections further, we establish finite-model-theoretic tools for proving lower bounds for the polynomial calculus over the rationals and over finite fields
    • …
    corecore