4,796 research outputs found

    Learning Using Privileged Information: SVM+ and Weighted SVM

    Full text link
    Prior knowledge can be used to improve predictive performance of learning algorithms or reduce the amount of data required for training. The same goal is pursued within the learning using privileged information paradigm which was recently introduced by Vapnik et al. and is aimed at utilizing additional information available only at training time -- a framework implemented by SVM+. We relate the privileged information to importance weighting and show that the prior knowledge expressible with privileged features can also be encoded by weights associated with every training example. We show that a weighted SVM can always replicate an SVM+ solution, while the converse is not true and we construct a counterexample highlighting the limitations of SVM+. Finally, we touch on the problem of choosing weights for weighted SVMs when privileged features are not available.Comment: 18 pages, 8 figures; integrated reviewer comments, improved typesettin

    Sparse Support Vector Infinite Push

    Full text link
    In this paper, we address the problem of embedded feature selection for ranking on top of the list problems. We pose this problem as a regularized empirical risk minimization with pp-norm push loss function (p=∞p=\infty) and sparsity inducing regularizers. We leverage the issues related to this challenging optimization problem by considering an alternating direction method of multipliers algorithm which is built upon proximal operators of the loss function and the regularizer. Our main technical contribution is thus to provide a numerical scheme for computing the infinite push loss function proximal operator. Experimental results on toy, DNA microarray and BCI problems show how our novel algorithm compares favorably to competitors for ranking on top while using fewer variables in the scoring function.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Block-Sparse Recovery via Convex Optimization

    Full text link
    Given a dictionary that consists of multiple blocks and a signal that lives in the range space of only a few blocks, we study the problem of finding a block-sparse representation of the signal, i.e., a representation that uses the minimum number of blocks. Motivated by signal/image processing and computer vision applications, such as face recognition, we consider the block-sparse recovery problem in the case where the number of atoms in each block is arbitrary, possibly much larger than the dimension of the underlying subspace. To find a block-sparse representation of a signal, we propose two classes of non-convex optimization programs, which aim to minimize the number of nonzero coefficient blocks and the number of nonzero reconstructed vectors from the blocks, respectively. Since both classes of problems are NP-hard, we propose convex relaxations and derive conditions under which each class of the convex programs is equivalent to the original non-convex formulation. Our conditions depend on the notions of mutual and cumulative subspace coherence of a dictionary, which are natural generalizations of existing notions of mutual and cumulative coherence. We evaluate the performance of the proposed convex programs through simulations as well as real experiments on face recognition. We show that treating the face recognition problem as a block-sparse recovery problem improves the state-of-the-art results by 10% with only 25% of the training data.Comment: IEEE Transactions on Signal Processin

    An Exponential Lower Bound on the Complexity of Regularization Paths

    Full text link
    For a variety of regularized optimization problems in machine learning, algorithms computing the entire solution path have been developed recently. Most of these methods are quadratic programs that are parameterized by a single parameter, as for example the Support Vector Machine (SVM). Solution path algorithms do not only compute the solution for one particular value of the regularization parameter but the entire path of solutions, making the selection of an optimal parameter much easier. It has been assumed that these piecewise linear solution paths have only linear complexity, i.e. linearly many bends. We prove that for the support vector machine this complexity can be exponential in the number of training points in the worst case. More strongly, we construct a single instance of n input points in d dimensions for an SVM such that at least \Theta(2^{n/2}) = \Theta(2^d) many distinct subsets of support vectors occur as the regularization parameter changes.Comment: Journal version, 28 Pages, 5 Figure
    • 

    corecore