93 research outputs found

    A Coinductive Approach to Proof Search

    Get PDF
    National audienceWe propose to study proof search from a coinductive point of view. In this paper, we consider intuitionistic logic and a focused system based on Herbelin's LJT for the implicational fragment. We introduce a variant of lambda calculus with potentially infinitely deep terms and a means of expressing alternatives for the description of the "solution spaces" (called Böhm forests), which are a representation of all (not necessarily well-founded but still locally well-formed) proofs of a given formula (more generally: of a given sequent). As main result we obtain, for each given formula, the reduction of a coinductive definition of the solution space to a effective coinductive description in a finitary term calculus with a formal greatest fixed-point operator. This reduction works in a quite direct manner for the case of Horn formulas. For the general case, the naive extension would not even be true. We need to study "co-contraction" of contexts (contraction bottom-up) for dealing with the varying contexts needed beyond the Horn fragment, and we point out the appropriate finitary calculus, where fixed-point variables are typed with sequents. Co-contraction enters the interpretation of the formal greatest fixed points - curiously in the semantic interpretation of fixed-point variables and not of the fixed-point operator

    Revisiting the correspondence between cut-elimination and normalisation

    Get PDF
    Cut-free proofs in Herbelin's sequent calculus are in 1-1 correspondence with normal natural deduction proofs. For this reason Herbelin's sequent calculus has been considered a privileged middle-point between L-systems and natural deduction. However, this bijection does not extend to proofs containing cuts and Herbelin observed that his cut-elimination procedure is not isomorphic to ÎČ\beta-reduction. In this paper we equip Herbelin's system with rewrite rules which, at the same time: (1) complete in a sense the cut elimination procedure firstly proposed by Herbelin; and (2) perform the intuitionistic "fragment'' of the tq-protocol - a cut-elimination procedure for classical logic defined by Danos, Joinet and Schellinx. Moreover we identify the subcalculus of our system which is isomorphic to natural deduction, the isomorphism being with respect not only to proofs but also to normalisation. Our results show, for the implicational fragment of intuitionistic logic, how to embed natural deduction in the much wider world of sequent calculus and what a particular cut-elimination procedure normalisation is.Fundação para a CiĂȘncia e a Tecnologia (FCT)

    Refutation Systems : An Overview and Some Applications to Philosophical Logics

    Get PDF
    Refutation systems are systems of formal, syntactic derivations, designed to derive the non-valid formulas or logical consequences of a given logic. Here we provide an overview with comprehensive references on the historical development of the theory of refutation systems and discuss some of their applications to philosophical logics

    Kripke Semantics for a Logical Framework

    Get PDF
    We present a semantics (using Kripke lambda models) for a logical framework (minimal implicational predicate logic with quantification over all higher types). We apply the semantics to obtain straightforward adequacy proofs for encodings of logics in the framework. 1 Introduction There has been much recent interest in the development and use of logical frameworks. A logical framework is a formal system within which many different logics can be easily represented. It is hoped that such frameworks will facilitate the rapid development of proof assistants for the wide variety of different logics used in computer science and other fields. In this paper we give a semantic analysis (using Kripke lambda models) of the use of minimal implicational predicate logic (with quantification over all higher types) as a logical framework. We choose this framework because it is relatively straightforward to give it a useful semantics. The use of such a logic as a framework is not new. Similar logics ha..

    Curry-Howard-Lambek Correspondence for Intuitionistic Belief

    Get PDF
    This paper introduces a natural deduction calculus for intuitionistic logic of belief IEL−\mathsf{IEL}^{-} which is easily turned into a modal λ\lambda-calculus giving a computational semantics for deductions in IEL−\mathsf{IEL}^{-}. By using that interpretation, it is also proved that IEL−\mathsf{IEL}^{-} has good proof-theoretic properties. The correspondence between deductions and typed terms is then extended to a categorical semantics for identity of proofs in IEL−\mathsf{IEL}^{-} showing the general structure of such a modality for belief in an intuitionistic framework.Comment: Submitted to Studia Logica on January 31st, 202

    What is refutation?

    Get PDF

    Relating Justification Logic Modality and Type Theory in Curry–Howard Fashion

    Full text link
    This dissertation is a work in the intersection of Justification Logic and Curry--Howard Isomorphism. Justification logic is an umbrella of modal logics of knowledge with explicit evidence. Justification logics have been used to tackle traditional problems in proof theory (in relation to Godel\u27s provability) and philosophy (Gettier examples, Russel\u27s barn paradox). The Curry--Howard Isomorphism or proofs-as-programs is an understanding of logic that places logical studies in conjunction with type theory and -- in current developments -- category theory. The point being that understanding a system as a logic, a typed calculus and, a language of a class of categories constitutes a useful discovery that can have many applications. The applications we will be mainly concerned with are type systems for useful programming language constructs. This work is structured in three parts: The first part is a a bird\u27s eye view into my research topics: intuitionistic logic, justified modality and type theory. The relevant systems are introduced syntactically together with main metatheoretic proof techniques which will be useful in the rest of the thesis. The second part features my main contributions. I will propose a modal type system that extends simple type theory (or, isomorphically, intuitionistic propositional logic) with elements of justification logic and will argue about its computational significance. More specifically, I will show that the obtained calculus characterizes certain computational phenomena related to linking (e.g. module mechanisms, foreign function interfaces) that abound in semantics of modern programming languages. I will present full metatheoretic results obtained for this logic/ calculus utilizing techniques from the first part and will provide proofs in the Appendix. The Appendix contains also information about an implementation of our calculus in the metaprogramming framework Makam. Finally, I conclude this work with a small ``outro\u27\u27, where I informally show that the ideas underlying my contributions can be extended in interesting ways

    Higher-Order Horn Clauses

    Get PDF
    A generalization of Horn clauses to a higher-order logic is described and examined as a basis for logic programming. In qualitative terms, these higher-order Horn clauses are obtained from the first-order ones by replacing first-order terms with simply typed λ-terms and by permitting quantification over all occurrences of function symbols and some occurrences of predicate symbols. Several proof-theoretic results concerning these extended clauses are presented. One result shows that although the substitutions for predicate variables can be quite complex in general, the substitutions necessary in the context of higher-order Horn clauses are tightly constrained. This observation is used to show that these higher-order formulas can specify computations in a fashion similar to first-order Horn clauses. A complete theorem proving procedure is also described for the extension. This procedure is obtained by interweaving higher-order unification with backchaining and goal reductions, and constitutes a higher-order generalization of SLD-resolution. These results have a practical realization in the higher-order logic programming language called λProlog

    Graph-based decision for Gödel-Dummett logics

    Get PDF
    International audienceWe present a graph-based decision procedure for Gödel-Dummett logics and an algorithm to compute counter-models. A formula is transformed into a conditional bi-colored graph in which we detect some specific cycles and alternating chains using matrix computations. From an instance graph containing no such cycle (resp. no (n+1)-alternating chain) we extract a counter-model in LC (resp. LCn)

    Permutability in proof terms for intuitionistic sequent calculus with cuts

    Get PDF
    This paper gives a comprehensive and coherent view on permutability in the intuitionistic sequent calculus with cuts. Specifically we show that, once permutability is packaged into appropriate global reduction procedures, it organizes the internal structure of the system and determines fragments with computational interest, both for the computation-as-proof-normalization and the computation-as-proof-search paradigms. The vehicle of the study is a lambda-calculus of multiary proof terms with generalized application, previously developed by the authors (the paper argues this system represents the simplest fragment of ordinary sequent calculus that does not fall into mere natural deduction). We start by adapting to our setting the concept of normal proof, developed by Mints, Dyckhoff, and Pinto, and by defining natural proofs, so that a proof is normal iff it is natural and cut-free. Natural proofs form a subsystem with a transparent Curry-Howard interpretation (a kind of formal vector notation for lambda-terms with vectors consisting of lists of lists of arguments), while searching for normal proofs corresponds to a slight relaxation of focusing (in the sense of LJT). Next, we define a process of permutative conversion to natural form, and show that its combination with cut elimination gives a concept of normalization for the sequent calculus. We derive a systematic picture of the full system comprehending a rich set of reduction procedures (cut elimination, flattening, permutative conversion, normalization, focalization), organizing the relevant subsystems and the important subclasses of cut-free, normal, and focused proofs.Partially financed by FCT through project UID/MAT/00013/2013, and by COST action CA15123 EUTYPES. The first and the last authors were partially financed by Fundação para a CiĂȘncia e a Tecnologia (FCT) through project UID/MAT/00013/2013. The first author got financial support by the COST action CA15123 EUTYPES.info:eu-repo/semantics/publishedVersio
    • 

    corecore