3,608 research outputs found

    Uniqueness of Normal Forms is Decidable for Shallow Term Rewrite Systems

    Get PDF
    Uniqueness of normal forms (UN=) is an important property of term rewrite systems. UN= is decidable for ground (i.e., variable-free) systems and undecidable in general. Recently it was shown to be decidable for linear, shallow systems. We generalize this previous result and show that this property is decidable for shallow rewrite systems, in contrast to confluence, reachability and other properties, which are all undecidable for flat systems. Our result is also optimal in some sense, since we prove that the UN= property is undecidable for two superclasses of flat systems: left-flat, left-linear systems in which right-hand sides are of depth at most two and right-flat, right-linear systems in which left-hand sides are of depth at most two

    Rewriting Modulo \beta in the \lambda\Pi-Calculus Modulo

    Full text link
    The lambda-Pi-calculus Modulo is a variant of the lambda-calculus with dependent types where beta-conversion is extended with user-defined rewrite rules. It is an expressive logical framework and has been used to encode logics and type systems in a shallow way. Basic properties such as subject reduction or uniqueness of types do not hold in general in the lambda-Pi-calculus Modulo. However, they hold if the rewrite system generated by the rewrite rules together with beta-reduction is confluent. But this is too restrictive. To handle the case where non confluence comes from the interference between the beta-reduction and rewrite rules with lambda-abstraction on their left-hand side, we introduce a notion of rewriting modulo beta for the lambda-Pi-calculus Modulo. We prove that confluence of rewriting modulo beta is enough to ensure subject reduction and uniqueness of types. We achieve our goal by encoding the lambda-Pi-calculus Modulo into Higher-Order Rewrite System (HRS). As a consequence, we also make the confluence results for HRSs available for the lambda-Pi-calculus Modulo.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759

    Deciding Confluence and Normal Form Properties of Ground Term Rewrite Systems Efficiently

    Full text link
    It is known that the first-order theory of rewriting is decidable for ground term rewrite systems, but the general technique uses tree automata and often takes exponential time. For many properties, including confluence (CR), uniqueness of normal forms with respect to reductions (UNR) and with respect to conversions (UNC), polynomial time decision procedures are known for ground term rewrite systems. However, this is not the case for the normal form property (NFP). In this work, we present a cubic time algorithm for NFP, an almost cubic time algorithm for UNR, and an almost linear time algorithm for UNC, improving previous bounds. We also present a cubic time algorithm for CR

    A Fast Decision Procedure For Uniqueness of Normal Forms w.r.t. Conversion of Shallow Term Rewriting Systems

    Get PDF
    Uniqueness of normal forms w.r.t. conversion (UNC) of term rewriting systems (TRSs) guarantees that there are no distinct convertible normal forms. It was recently shown that the UNC property of TRSs is decidable for shallow TRSs (Radcliffe et al., 2010). The existing procedure mainly consists of testing whether there exists a counterexample in a finite set of candidates; however, the procedure suffers a bottleneck of having a sheer number of such candidates. In this paper, we propose a new procedure which consists of checking a smaller number of such candidates and enumerating such candidates more efficiently. Correctness of the proposed procedure is proved and its complexity is analyzed. Furthermore, these two procedures have been implemented and it is experimentally confirmed that the proposed procedure runs much faster than the existing procedure
    • …
    corecore