2,127 research outputs found

    Uniqueness and minimal obstructions for tree-depth

    Get PDF
    A k-ranking of a graph G is a labeling of the vertices of G with values from {1,...,k} such that any path joining two vertices with the same label contains a vertex having a higher label. The tree-depth of G is the smallest value of k for which a k-ranking of G exists. The graph G is k-critical if it has tree-depth k and every proper minor of G has smaller tree-depth. We establish partial results in support of two conjectures about the order and maximum degree of k-critical graphs. As part of these results, we define a graph G to be 1-unique if for every vertex v in G, there exists an optimal ranking of G in which v is the unique vertex with label 1. We show that several classes of k-critical graphs are 1-unique, and we conjecture that the property holds for all k-critical graphs. Generalizing a previously known construction for trees, we exhibit an inductive construction that uses 1-unique k-critical graphs to generate large classes of critical graphs having a given tree-depth.Comment: 14 pages, 4 figure

    An FPT algorithm and a polynomial kernel for Linear Rankwidth-1 Vertex Deletion

    Get PDF
    Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour [Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514--528, 2006]. Motivated from recent development on graph modification problems regarding classes of graphs of bounded treewidth or pathwidth, we study the Linear Rankwidth-1 Vertex Deletion problem (shortly, LRW1-Vertex Deletion). In the LRW1-Vertex Deletion problem, given an nn-vertex graph GG and a positive integer kk, we want to decide whether there is a set of at most kk vertices whose removal turns GG into a graph of linear rankwidth at most 11 and find such a vertex set if one exists. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-Vertex Deletion can be solved in time f(k)â‹…n3f(k)\cdot n^3 for some function ff, it is not clear whether this problem allows a running time with a modest exponential function. We first establish that LRW1-Vertex Deletion can be solved in time 8kâ‹…nO(1)8^k\cdot n^{\mathcal{O}(1)}. The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define necklace graphs and investigate their structural properties. Later, we reduce the polynomial factor by refining the trivial branching step based on a cliquewidth expression of a graph, and obtain an algorithm that runs in time 2O(k)â‹…n42^{\mathcal{O}(k)}\cdot n^4. We also prove that the running time cannot be improved to 2o(k)â‹…nO(1)2^{o(k)}\cdot n^{\mathcal{O}(1)} under the Exponential Time Hypothesis assumption. Lastly, we show that the LRW1-Vertex Deletion problem admits a polynomial kernel.Comment: 29 pages, 9 figures, An extended abstract appeared in IPEC201

    Matrix partitions of perfect graphs

    Get PDF
    AbstractGiven a symmetric m by m matrix M over 0,1,*, the M-partition problem asks whether or not an input graph G can be partitioned into m parts corresponding to the rows (and columns) of M so that two distinct vertices from parts i and j (possibly with i=j) are non-adjacent if M(i,j)=0, and adjacent if M(i,j)=1. These matrix partition problems generalize graph colourings and homomorphisms, and arise frequently in the study of perfect graphs; example problems include split graphs, clique and skew cutsets, homogeneous sets, and joins.In this paper we study M-partitions restricted to perfect graphs. We identify a natural class of ‘normal’ matrices M for which M-partitionability of perfect graphs can be characterized by a finite family of forbidden induced subgraphs (and hence admits polynomial time algorithms for perfect graphs). We further classify normal matrices into two classes: for the first class, the size of the forbidden subgraphs is linear in the size of M; for the second class we only prove exponential bounds on the size of forbidden subgraphs. (We exhibit normal matrices of the second class for which linear bounds do not hold.)We present evidence that matrices M which are not normal yield badly behaved M-partition problems: there are polynomial time solvable M-partition problems that do not have finite forbidden subgraph characterizations for perfect graphs. There are M-partition problems that are NP-complete for perfect graphs. There are classes of matrices M for which even proving ‘dichotomy’ of the corresponding M-partition problems for perfect graphs—i.e., proving that these problems are all polynomial or NP-complete—is likely to be difficult

    Higher-Spin Gauge Theories and Bulk Locality

    Full text link
    We present a no-go result on consistent Noether interactions among higher-spin gauge fields on anti-de Sitter space-times. We show that there is a non-local obstruction at the classical level to consistent interacting field theory descriptions of massless higher-spin particles that are described in the free limit by the free Fronsdal action, under the assumption that such theories arise from the gauging of a global higher-spin symmetry. Our result suggests that the Fronsdal programme for introducing interactions among higher-spin gauge fields cannot be completed without introducing new guiding principles, which could lie beyond the framework of classical field theory.Comment: 10 pages + refs. v2: Improved presentation, clarifications and references added. Some parts removed which just reviewed previous published work. To appear in Physical Review Letter
    • …
    corecore