17,418 research outputs found

    New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials

    Full text link
    We consider the Poisson-Nernst-Planck system which is well-accepted for describing dilute electrolytes as well as transport of charged species in homogeneous environments. Here, we study these equations in porous media whose electric permittivities show a contrast compared to the electric permittivity of the electrolyte phase. Our main result is the derivation of convenient low-dimensional equations, that is, of effective macroscopic porous media Poisson-Nernst-Planck equations, which reliably describe ionic transport. The contrast in the electric permittivities between liquid and solid phase and the heterogeneity of the porous medium induce strongly oscillating electric potentials (fields). In order to account for this special physical scenario, we introduce a modified asymptotic multiple-scale expansion which takes advantage of the nonlinearly coupled structure of the ionic transport equations. This allows for a systematic upscaling resulting in a new effective porous medium formulation which shows a new transport term on the macroscale. Solvability of all arising equations is rigorously verified. This emergence of a new transport term indicates promising physical insights into the influence of the microscale material properties on the macroscale. Hence, systematic upscaling strategies provide a source and a prospective tool to capitalize intrinsic scale effects for scientific, engineering, and industrial applications

    Competition and boundary formation in heterogeneous media: Application to neuronal differentiation

    Get PDF
    We analyze an inhomogeneous system of coupled reaction-diffusion equations representing the dynamics of gene expression during differentiation of nerve cells. The outcome of this developmental phase is the formation of distinct functional areas separated by sharp and smooth boundaries. It proceeds through the competition between the expression of two genes whose expression is driven by monotonic gradients of chemicals, and the products of gene expression undergo local diffusion and drive gene expression in neighboring cells. The problem therefore falls in a more general setting of species in competition within a non-homogeneous medium. We show that in the limit of arbitrarily small diffusion, there exists a unique monotonic stationary solution, which splits the neural tissue into two winner-take-all parts at a precise boundary point: on both sides of the boundary, different neuronal types are present. In order to further characterize the location of this boundary, we use a blow-up of the system and define a traveling wave problem parametrized by the position within the monotonic gradient: the precise boundary location is given by the unique point in space at which the speed of the wave vanishes

    On optimal completions of incomplete pairwise comparison matrices

    Get PDF
    An important variant of a key problem for multi-attribute decision making is considered. We study the extension of the pairwise comparison matrix to the case when only partial information is available: for some pairs no comparison is given. It is natural to define the inconsistency of a partially filled matrix as the inconsistency of its best, completely filled completion. We study here the uniqueness problem of the best completion for two weighting methods, the Eigen-vector Method and the Logarithmic Least Squares Method. In both settings we obtain the same simple graph theoretic characterization of the uniqueness. The optimal completion will be unique if and only if the graph associated with the partially defined matrix is connected. Some numerical experiences are discussed at the end of the paper

    Extending du Bois-Reymond's Infinitesimal and Infinitary Calculus Theory

    Full text link
    The discovery of the infinite integer leads to a partition between finite and infinite numbers. Construction of an infinitesimal and infinitary number system, the Gossamer numbers. Du Bois-Reymond's much-greater-than relations and little-o/big-O defined with the Gossamer number system, and the relations algebra is explored. A comparison of function algebra is developed. A transfer principle more general than Non-Standard-Analysis is developed, hence a two-tier system of calculus is described. Non-reversible arithmetic is proved, and found to be the key to this calculus and other theory. Finally sequences are partitioned between finite and infinite intervals.Comment: Resubmission of 6 other submissions. 99 page
    corecore