109 research outputs found

    Allen-Cahn equation with strong irreversibility (Analysis on Shapes of Solutions to Partial Differential Equations)

    Get PDF
    This note mainly presents a review of recent works [3, 4] on a variant of the Allen-Cahn equation with a nondecreasing constraint on flow

    Abstract book

    Get PDF
    Welcome at the International Conference on Differential and Difference Equations & Applications 2015. The main aim of this conference is to promote, encourage, cooperate, and bring together researchers in the fields of differential and difference equations. All areas of differential & difference equations will be represented with special emphasis on applications. It will be mathematically enriching and socially exciting event. List of registered participants consists of 169 persons from 45 countries. The five-day scientific program runs from May 18 (Monday) till May 22, 2015 (Friday). It consists of invited lectures (plenary lectures and invited lectures in sections) and contributed talks in the following areas: Ordinary differential equations, Partial differential equations, Numerical methods and applications, other topics

    A Game Theory Approach for the Groundwater Pollution Control

    Get PDF
    A differential game modeling the noncooperative outcome of pollution in groundwater is studied. Spatio-temporal objectives are constrained by a convection-diffusion-reaction equation ruling the spread of the pollution in the aquifer, and the velocity of the flow solves an elliptic partial differential equation. The existence of a Nash equilibrium is proved using a fixed point strategy. A uniqueness result for the Nash equilibrium is also proved under some additional assumptions. Some numerical illustrations are provided

    Numerical Methods for Partial Differential Equations

    Get PDF
    These lecture notes are devoted to the numerical solution of partial differential equations (PDEs). PDEs arise in many fields and are extremely important in modeling of technical processes with applications in physics, biology, chemisty, economics, mechanical engineering, and so forth. In these notes, not only classical topics for linear PDEs such as finite differences, finite elements, error estimation, and numerical solution schemes are addressed, but also schemes for nonlinear PDEs and coupled problems up to current state-of-the-art techniques are covered. In the Winter 2020/2021 an International Class with additional funding from DAAD (German Academic Exchange Service) and local funding from the Leibniz University Hannover, has led to additional online materials such as links to youtube videos, which complement these lecture notes. This is the updated and extended Version 2. The first version was published under the DOI: https://doi.org/10.15488/9248

    Discrete Fractional Calculus and Its Applications to Tumor Growth

    Get PDF
    Almost every theory of mathematics has its discrete counterpart that makes it conceptually easier to understand and practically easier to use in the modeling process of real world problems. For instance, one can take the difference of any function, from 1st order up to the n-th order with discrete calculus. However, it is also possible to extend this theory by means of discrete fractional calculus and make n- any real number such that the ½-th order difference is well defined. This thesis is comprised of five chapters that demonstrate some basic definitions and properties of discrete fractional calculus while developing the simplest discrete fractional variational theory. Some applications of the theory to tumor growth are also studied. The first chapter is a brief introduction to discrete fractional calculus that presents some important mathematical functions widely used in the theory. The second chapter shows the main fractional difference and sum operators as well as their important properties. In the third chapter, a new proof for Leibniz formula is given and summation by parts for discrete fractional calculus is stated and proved. The simplest variational problem in discrete calculus and the related Euler-Lagrange equation are developed in the fourth chapter. In the fifth chapter, the fractional Gompertz difference equation is introduced. First, the existence and uniqueness of the solution is shown and then the equation is solved by the method of successive approximation. Finally, applications of the theory to tumor and bacterial growth are presented

    Fractional Differential Equations, Inclusions and Inequalities with Applications

    Get PDF
    During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering

    The non-perturbative regime of cosmic structure formation

    Full text link
    This paper focusses on the barely understood gap between the weakly nonlinear regime of structure formation and the onset of the virialized regime. While the former is accessed through perturbative calculations and the latter through virialization conditions incorporating dynamical stresses that arise in collisionless self-gravitating systems due to velocity dispersion forces, the addressed regime can only be understood through non-perturbative models. We here present an exact Lagrangian integral that provides a tool to access this regime. We derive a transport equation for the peculiar-gravitational field strength and integrate it along comoving trajectories of fluid elements. The so-obtained integral provides an exact expression that solves the longitudinal gravitational field equation in general. We argue that this integral provides a powerful approximation beyond the Lagrangian perturbative regime, and discuss its relation to known approximations, among them Lagrangian perturbation solutions including the Zel'dovich approximation and approximations for adhesive gravitational clustering, including the adhesion approximation. Furthermore, we propose an iteration scheme for a systematic analytical and numerical construction of trajectory fields. The integral may also be employed to improve inverse reconstruction techniques.Comment: 9 pages; matches published version in Astron. Astrophy
    corecore