336 research outputs found

    Tie-zone : the bridge between watershed transforms and fuzzy connectedness

    Get PDF
    Orientador: Roberto de Alencar LotufoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: Esta tese introduz o novo conceito de transformada de zona de empate que unifica as múltiplas soluções de uma transformada de watershed, conservando apenas as partes comuns em todas estas, tal que as partes que diferem constituem a zona de empate. A zona de empate aplicada ao watershed via transformada imagem-floresta (TZ-IFT-WT) se revela um elo inédito entre transformadas de watershed baseadas em paradigmas muito diferentes: gota d'água, inundação, caminhos ótimos e floresta de peso mínimo. Para todos esses paradigmas e os algoritmos derivados, é um desafio se ter uma solução única, fina, e que seja consistente com uma definição. Por isso, propõe-se um afinamento da zona de empate, único e consistente. Além disso, demonstra-se que a TZ-IFT-WT também é o dual de métodos de segmentação baseados em conexidade nebulosa. Assim, a ponte criada entre as abordagens morfológica e nebulosa permite aproveitar avanços de ambas. Em conseqüência disso, o conceito de núcleo de robustez para as sementes é explorado no caso do watershed.Abstract: This thesis introduces the new concept of tie-zone transform that unifies the multiple solutions of a watershed transform, by conserving only the common parts among them such that the differing parts constitute the tie zone. The tie zone applied to the watershed via image-foresting transform (TZ-IFTWT) proves to be a link between watershed transforms based on very different paradigms: drop of water, flooding, optimal paths and forest of minimum weight. For all these paradigms and the derived algorithms, it is a challenge to get a unique and thin solution which is consistent with a definition. That is why we propose a unique and consistent thinning of the tie zone. In addition, we demonstrate that the TZ-IFT-WT is also the dual of segmentation methods based on fuzzy connectedness. Thus, the bridge between the morphological and the fuzzy approaches allows to take benefit from the advance of both. As a consequence, the concept of cores of robustness for the seeds is exploited in the case of watersheds.DoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétric

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Image analysis for the study of chromatin distribution in cell nuclei with application to cervical cancer screening

    Get PDF

    Wild Brook Trout (Salvelinus fontinalis) Demographics and Movement in the Presence of Undersized Road Crossings in Headwater Streams in Central New Hampshire

    Get PDF
    Populations of wild Brook Trout (Salvelinus fontinalis) continue to decline across their historic range, making relatively healthy populations and intact habitats within northern New England increasingly important for conservation. The Beebe River watershed, located in central New Hampshire, is home to intact headwater populations of wild Brook Trout despite movement barriers and riparian manipulation affecting tributaries to the mainstem river. The region has also experienced two centuries of widespread timber harvest and a century of stream acidification, creating further ecological stressors. We focused on three headwater tributaries with 1) impassable road crossing and reduced canopy cover, 2) passable road crossing and reduced canopy cover, and 3) no impediments to movement and unaltered canopy. We documented Brook Trout abundance, density, age structure, condition, biomass, growth, net movement, cumulative movement, home range, and recruitment with the goal of better understanding potential habitat influences on fish across tributaries and among geomorphic threshold regions. Our primary sampling methods included depletion electrofishing, PIT tag mark-recapture techniques, and detailed habitat assessments and temperature monitoring. We hypothesized that undersized crossings and no-low canopy reaches would create physical and thermal barriers for fish. In particular, we predicted that fish in streams with these barriers would exhibit lower density, fewer age classes and lower growth rates while seasonal and annual movement would increase compared to fish in an unimpacted stream. Overall, tributary populations were comprised of young fish that exhibited little movement. We failed to support many of our hypothesis metrics due to underestimating the indirect influences of no-low canopy reaches. Although we documented a crossing barrier inhibiting upstream movement, fish with unrestricted access to the no-low canopy primarily grew more and moved less, while density remained stable interannually. In contrast, fish in the most impacted stream and the unimpacted stream exhibited increased movement and significant declines in interannual density. This project was a unique opportunity to compile a detailed description of the spatial and temporal differences in Brook trout populations for two seasons prior to multiple crossing replacements and habitat enhancement. Our research helps fisheries managers to better understand the benefit of watershed-wide restoration to inform the protection of wild Brook Trout populations

    A Virtual Grain Structure Representation System for Micromechanics Simulations

    Get PDF
    Representing a grain structure within a combined finite element computer aided engineering environment is essential for micromechanics simulations. Methods are required to effectively generate high-fidelity virtual grain structures for accurate studies. A high-fidelity virtual grain structure means a statistically equivalent structure in conjunction with desired grain size distribution features, and must be represented with realistic grain morphology. A family of controlled Poisson Voronoi tessellation (CPVT) models have been developed in this work for systematically generating virtual grain structures with the aforementioned properties. Three tasks have been accomplished in the development of the CPVT models: (i) defining the grain structure’s regularity that specifies the uniformity of a tessellation as well as deriving a control parameter based on the regularity; (ii) modelling the mapping from a grain structure’s regularity to its grain size distribution; and (iii) establishing the relation between a set of physical parameters and a distribution function. A one-gamma distribution function is used to describe a grain size distribution characteristic and a group of four physical parameters are employed to represent the metallographic measurements of a grain size distribution property. Mathematical proofs of the uniqueness of the determination of the distribution parameter from the proposed set of physical parameters have been studied, and an efficient numerical procedure is provided for computing the distribution parameter. Based on the general scheme, two- and three-dimensional CPVT models have been formulated, which respectively define the quantities of regularity and control parameters, and model the mapping between regularity and grain size distribution. For the 2D-CPVT model, statistical tests have been carried out to validate the accuracy and robustness of regularity and grain size distribution control. In addition, micrographs with different grain size distribution features are employed to examine the capability of the 2D-CPVT model to generate virtual grain structures that meet physical measurements. A crystal plasticity finite element (CPFE) simulation of plane strain uniaxial tension has been performed to show the effect of grain size distribution on local strain distribution. For the 3D-CPVT model, a set of CPFE analyses of micro-pillar compression have been run and the effects of both regularity and grain size on deformation responses investigated. Further to this, a multi-zone scheme is proposed for the CPVT models to generate virtual gradient grain structures. In conjunction with the CPVT model that controls the seed generating process within individual zones, the multi-zone CPVT model has been developed by incorporating a novel mechanism of controlling the seed generation for grains spanning different zones. This model has the flexibility of generating various gradient grain structures and the natural morphology for interfacial grains between adjacent zones. Both of the 2D- and 3D-CPVT models are capable of generating a virtual grain structure with a mean grain size gradient for the grain structure domain and grain size distribution control for individual zones. A true gradient grain structure, two simulated gradient grain structure, and a true gradient grain structure with an elongated zone have been used to examine the capability of the multi-zone CPVT model. To facilitate the CPFE analyses of inter-granular crack initiation and evolution using the cohesive zone models, a Voronoi tessellation model with non-zero thickness cohesive zone representation was developed. A grain boundary offsetting algorithm is proposed to efficiently produce the cohesive boundaries for a Voronoi tessellation. The most challenging issue of automatically meshing multiple junctions with quadrilateral elements has been resolved and a rule-based method is presented to perform the automatically partitioning of cohesive zone junctions, including data representation, edge event processing and cut-trim operations. In order to demonstrate the novelty of the proposed cohesive zone modelling and junction partitioning schemes, the CPFE simulations of plane strain uniaxial tension and three point bending have been studied. A software system, VGRAIN, was developed to implement the proposed virtual grain structure modelling methods. Via user-friendly interfaces and the well-organised functional modules a virtual grain structure can be automatically generated to a very large-scale with the desired grain morphology and grain size properties. As a pre-processing grain structure representation system, VGRAIN is also capable of defining crystallographic orientations and mechanical constants for a generated grain structure. A set of additional functions has also been developed for users to study a generated grain structure and verify the feasibility of the generated case for their simulation requirements. A well-built grain structure model in VGRAIN can be easily exported into the commercial FE/CAE platform, e.g. ABAQUS and DEFORM, via script input, whereby the VGRAIN system is seamlessly integrated into CPFE modelling and simulation processing

    The role of trust and ownership in community wildfire protection planning in west central Montana

    Get PDF

    Global forest management certification: future development potential

    Get PDF

    Discount options as a financial instrument supporting REDD +

    Get PDF
    corecore