8,806 research outputs found

    Perfect Roman Domination and Unique Response Roman Domination

    Full text link
    The idea of enumeration algorithms with polynomial delay is to polynomially bound the running time between any two subsequent solutions output by the enumeration algorithm. While it is open for more than four decades if all minimal dominating sets of a graph can be enumerated in output-polynomial time, it has recently been proven that pointwise-minimal Roman dominating functions can be enumerated even with polynomial delay. The idea of the enumeration algorithm was to use polynomial-time solvable extension problems. We use this as a motivation to prove that also two variants of Roman dominating functions studied in the literature, named perfect and unique response, can be enumerated with polynomial delay. This is interesting since Extension Perfect Roman Domination is W[1]-complete if parameterized by the weight of the given function and even W[2]-complete if parameterized by the number vertices assigned 0 in the pre-solution, as we prove. Otherwise, efficient solvability of extension problems and enumerability with polynomial delay tend to go hand-in-hand. We achieve our enumeration result by constructing a bijection to Roman dominating functions, where the corresponding extension problem is polynomimaltime solvable. Furthermore, we show that Unique Response Roman Domination is solvable in polynomial time on split graphs, while Perfect Roman Domination is NP-complete on this graph class, which proves that both variations, albeit coming with a very similar definition, do differ in some complexity aspects. This way, we also solve an open problem from the literature

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    On the Roman domination in the lexicographic product of graphs

    Get PDF
    AbstractA Roman dominating function of a graph G=(V,E) is a function f:V→{0,1,2} such that every vertex with f(v)=0 is adjacent to some vertex with f(v)=2. The Roman domination number of G is the minimum of w(f)=∑v∈Vf(v) over all such functions. Using a new concept of the so-called dominating couple we establish the Roman domination number of the lexicographic product of graphs. We also characterize Roman graphs among the lexicographic product of graphs

    Disjoint Dominating Sets with a Perfect Matching

    Full text link
    In this paper, we consider dominating sets DD and DD' such that DD and DD' are disjoint and there exists a perfect matching between them. Let DDm(G)DD_{\textrm{m}}(G) denote the cardinality of smallest such sets D,DD, D' in GG (provided they exist, otherwise DDm(G)=DD_{\textrm{m}}(G) = \infty). This concept was introduced in [Klostermeyer et al., Theory and Application of Graphs, 2017] in the context of studying a certain graph protection problem. We characterize the trees TT for which DDm(T)DD_{\textrm{m}}(T) equals a certain graph protection parameter and for which DDm(T)=α(T)DD_{\textrm{m}}(T) = \alpha(T), where α(G)\alpha(G) is the independence number of GG. We also further study this parameter in graph products, e.g., by giving bounds for grid graphs, and in graphs of small independence number

    Theoretical Computer Science and Discrete Mathematics

    Get PDF
    This book includes 15 articles published in the Special Issue "Theoretical Computer Science and Discrete Mathematics" of Symmetry (ISSN 2073-8994). This Special Issue is devoted to original and significant contributions to theoretical computer science and discrete mathematics. The aim was to bring together research papers linking different areas of discrete mathematics and theoretical computer science, as well as applications of discrete mathematics to other areas of science and technology. The Special Issue covers topics in discrete mathematics including (but not limited to) graph theory, cryptography, numerical semigroups, discrete optimization, algorithms, and complexity

    Contents

    Get PDF

    Spokane Intercollegiate Research Conference 2021

    Get PDF

    Tracking advanced persistent threats in critical infrastructures through opinion dynamics

    Get PDF
    Advanced persistent threats pose a serious issue for modern industrial environments, due to their targeted and complex attack vectors that are difficult to detect. This is especially severe in critical infrastructures that are accelerating the integration of IT technologies. It is then essential to further develop effective monitoring and response systems that ensure the continuity of business to face the arising set of cyber-security threats. In this paper, we study the practical applicability of a novel technique based on opinion dynamics, that permits to trace the attack throughout all its stages along the network by correlating different anomalies measured over time, thereby taking the persistence of threats and the criticality of resources into consideration. The resulting information is of essential importance to monitor the overall health of the control system and cor- respondingly deploy accurate response procedures. Advanced Persistent Threat Detection Traceability Opinion Dynamics.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore