108 research outputs found

    On αrγs(k)-perfect graphs

    Get PDF
    AbstractFor some integer k⩾0 and two graph parameters π and τ, a graph G is called πτ(k)-perfect, if π(H)−τ(H)⩽k for every induced subgraph H of G. For r⩾1 let αr and γr denote the r-(distance)-independence and r-(distance)-domination number, respectively. In (J. Graph Theory 32 (1999) 303–310), I. Zverovich gave an ingenious complete characterization of α1γ1(k)-perfect graphs in terms of forbidden induced subgraphs. In this paper we study αrγs(k)-perfect graphs for r,s⩾1. We prove several properties of minimal αrγs(k)-imperfect graphs. Generalizing Zverovich's main result in (J. Graph Theory 32 (1999) 303–310), we completely characterize α2r−1γr(k)-perfect graphs for r⩾1. Furthermore, we characterize claw-free α2γ2(k)-perfect graphs

    Total irredundance in graphs

    Get PDF
    AbstractA set S of vertices in a graph G is called a total irredundant set if, for each vertex v in G,v or one of its neighbors has no neighbor in S−{v}. We investigate the minimum and maximum cardinalities of maximal total irredundant sets

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs

    k-Tuple_Total_Domination_in_Inflated_Graphs

    Full text link
    The inflated graph GIG_{I} of a graph GG with n(G)n(G) vertices is obtained from GG by replacing every vertex of degree dd of GG by a clique, which is isomorph to the complete graph KdK_{d}, and each edge (xi,xj)(x_{i},x_{j}) of GG is replaced by an edge (u,v)(u,v) in such a way that u∈Xiu\in X_{i}, v∈Xjv\in X_{j}, and two different edges of GG are replaced by non-adjacent edges of GIG_{I}. For integer k≥1k\geq 1, the kk-tuple total domination number γ×k,t(G)\gamma_{\times k,t}(G) of GG is the minimum cardinality of a kk-tuple total dominating set of GG, which is a set of vertices in GG such that every vertex of GG is adjacent to at least kk vertices in it. For existing this number, must the minimum degree of GG is at least kk. Here, we study the kk-tuple total domination number in inflated graphs when k≥2k\geq 2. First we prove that n(G)k≤γ×k,t(GI)≤n(G)(k+1)−1n(G)k\leq \gamma_{\times k,t}(G_{I})\leq n(G)(k+1)-1, and then we characterize graphs GG that the kk-tuple total domination number number of GIG_I is n(G)kn(G)k or n(G)k+1n(G)k+1. Then we find bounds for this number in the inflated graph GIG_I, when GG has a cut-edge ee or cut-vertex vv, in terms on the kk-tuple total domination number of the inflated graphs of the components of G−eG-e or vv-components of G−vG-v, respectively. Finally, we calculate this number in the inflated graphs that have obtained by some of the known graphs
    • …
    corecore