8 research outputs found

    Word Equations and Related Topics. Independence, Decidability and Characterizations

    Get PDF
    The three main topics of this work are independent systems and chains of word equations, parametric solutions of word equations on three unknowns, and unique decipherability in the monoid of regular languages. The most important result about independent systems is a new method giving an upper bound for their sizes in the case of three unknowns. The bound depends on the length of the shortest equation. This result has generalizations for decreasing chains and for more than three unknowns. The method also leads to shorter proofs and generalizations of some old results. Hmelevksii’s theorem states that every word equation on three unknowns has a parametric solution. We give a significantly simplified proof for this theorem. As a new result we estimate the lengths of parametric solutions and get a bound for the length of the minimal nontrivial solution and for the complexity of deciding whether such a solution exists. The unique decipherability problem asks whether given elements of some monoid form a code, that is, whether they satisfy a nontrivial equation. We give characterizations for when a collection of unary regular languages is a code. We also prove that it is undecidable whether a collection of binary regular languages is a code.Siirretty Doriast

    Measure of infinitary codes

    Get PDF

    Acta Cybernetica : Volume 11. Number 3.

    Get PDF

    Acta Cybernetica : Volume 22. Number 2.

    Get PDF

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Proceedings of the Fourth Russian Finnish Symposium on Discrete Mathematics

    Get PDF

    Proceedings of the Fourth Russian Finnish Symposium on Discrete Mathematics

    Get PDF

    Unique decipherability in the additive monoid of sets of numbers

    Get PDF
    Sets of integers form a monoid, where the product of two sets A and B is defined as the set containing a+b for all a∈Aa\in A and b∈Bb\in B. We give a characterization of when a family of finite sets is a code in this monoid, that is when the sets do not satisfy any nontrivial relation. We also extend this result for some infinite sets, including all infinite rational sets
    corecore