6,561 research outputs found

    Unique Shortest Vector Problem for max norm is NP-hard

    Get PDF
    The unique Shortest vector problem (uSVP) in lattice theory plays a crucial role in many public-key cryptosystems. The security of those cryptosystems bases on the hardness of uSVP. However, so far there is no proof for the proper hardness of uSVP even in its exact version. In this paper, we show that the exact version of uSVP for \ell_\infty norm is NP-hard. Furthermore, many other lattice problems including unique Subspace avoiding problem, unique Closest vector problem and unique Generalized closest vector problem, for any p\ell_p norm, are also shown to be NP-hard

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    On the Closest Vector Problem with a Distance Guarantee

    Get PDF
    We present a substantially more efficient variant, both in terms of running time and size of preprocessing advice, of the algorithm by Liu, Lyubashevsky, and Micciancio for solving CVPP (the preprocessing version of the Closest Vector Problem, CVP) with a distance guarantee. For instance, for any α<1/2\alpha < 1/2, our algorithm finds the (unique) closest lattice point for any target point whose distance from the lattice is at most α\alpha times the length of the shortest nonzero lattice vector, requires as preprocessing advice only NO~(nexp(α2n/(12α)2))N \approx \widetilde{O}(n \exp(\alpha^2 n /(1-2\alpha)^2)) vectors, and runs in time O~(nN)\widetilde{O}(nN). As our second main contribution, we present reductions showing that it suffices to solve CVP, both in its plain and preprocessing versions, when the input target point is within some bounded distance of the lattice. The reductions are based on ideas due to Kannan and a recent sparsification technique due to Dadush and Kun. Combining our reductions with the LLM algorithm gives an approximation factor of O(n/logn)O(n/\sqrt{\log n}) for search CVPP, improving on the previous best of O(n1.5)O(n^{1.5}) due to Lagarias, Lenstra, and Schnorr. When combined with our improved algorithm we obtain, somewhat surprisingly, that only O(n) vectors of preprocessing advice are sufficient to solve CVPP with (the only slightly worse) approximation factor of O(n).Comment: An early version of the paper was titled "On Bounded Distance Decoding and the Closest Vector Problem with Preprocessing". Conference on Computational Complexity (2014

    On the Lattice Isomorphism Problem

    Full text link
    We study the Lattice Isomorphism Problem (LIP), in which given two lattices L_1 and L_2 the goal is to decide whether there exists an orthogonal linear transformation mapping L_1 to L_2. Our main result is an algorithm for this problem running in time n^{O(n)} times a polynomial in the input size, where n is the rank of the input lattices. A crucial component is a new generalized isolation lemma, which can isolate n linearly independent vectors in a given subset of Z^n and might be useful elsewhere. We also prove that LIP lies in the complexity class SZK.Comment: 23 pages, SODA 201

    On the Lattice Distortion Problem

    Get PDF
    We introduce and study the \emph{Lattice Distortion Problem} (LDP). LDP asks how "similar" two lattices are. I.e., what is the minimal distortion of a linear bijection between the two lattices? LDP generalizes the Lattice Isomorphism Problem (the lattice analogue of Graph Isomorphism), which simply asks whether the minimal distortion is one. As our first contribution, we show that the distortion between any two lattices is approximated up to a nO(logn)n^{O(\log n)} factor by a simple function of their successive minima. Our methods are constructive, allowing us to compute low-distortion mappings that are within a 2O(nloglogn/logn)2^{O(n \log \log n/\log n)} factor of optimal in polynomial time and within a nO(logn)n^{O(\log n)} factor of optimal in singly exponential time. Our algorithms rely on a notion of basis reduction introduced by Seysen (Combinatorica 1993), which we show is intimately related to lattice distortion. Lastly, we show that LDP is NP-hard to approximate to within any constant factor (under randomized reductions), by a reduction from the Shortest Vector Problem.Comment: This is the full version of a paper that appeared in ESA 201

    Non-Abelian Analogs of Lattice Rounding

    Full text link
    Lattice rounding in Euclidean space can be viewed as finding the nearest point in the orbit of an action by a discrete group, relative to the norm inherited from the ambient space. Using this point of view, we initiate the study of non-abelian analogs of lattice rounding involving matrix groups. In one direction, we give an algorithm for solving a normed word problem when the inputs are random products over a basis set, and give theoretical justification for its success. In another direction, we prove a general inapproximability result which essentially rules out strong approximation algorithms (i.e., whose approximation factors depend only on dimension) analogous to LLL in the general case.Comment: 30 page

    Moments tensors, Hilbert's identity, and k-wise uncorrelated random variables

    Get PDF

    Computing sparse multiples of polynomials

    Full text link
    We consider the problem of finding a sparse multiple of a polynomial. Given f in F[x] of degree d over a field F, and a desired sparsity t, our goal is to determine if there exists a multiple h in F[x] of f such that h has at most t non-zero terms, and if so, to find such an h. When F=Q and t is constant, we give a polynomial-time algorithm in d and the size of coefficients in h. When F is a finite field, we show that the problem is at least as hard as determining the multiplicative order of elements in an extension field of F (a problem thought to have complexity similar to that of factoring integers), and this lower bound is tight when t=2.Comment: Extended abstract appears in Proc. ISAAC 2010, pp. 266-278, LNCS 650
    corecore