46,333 research outputs found

    Minimum Cycle Base of Graphs Identified by Two Planar Graphs

    Get PDF
    In this paper, we study the minimum cycle base of the planar graphs obtained from two 2-connected planar graphs by identifying an edge (or a cycle) of one graph with the corresponding edge (or cycle) of another, related with map geometries, i.e., Smarandache 2-dimensional manifolds

    Convex Cycle Bases

    Get PDF
    Convex cycles play a role e.g. in the context of product graphs. We introduce convex cycle bases and describe a polynomial-time algorithm that recognizes whether a given graph has a convex cycle basis and provides an explicit construction in the positive case. Relations between convex cycles bases and other types of cycles bases are discussed. In particular we show that if G has a unique minimal cycle bases, this basis is convex. Furthermore, we characterize a class of graphs with convex cycles bases that includes partial cubes and hence median graphs. (authors' abstract)Series: Research Report Series / Department of Statistics and Mathematic

    On the Number of Circuit-cocircuit Reversal Classes of an Oriented Matroid

    Get PDF
    The first author introduced the circuit-cocircuit reversal system of an oriented matroid, and showed that when the underlying matroid is regular, the cardinalities of such system and its variations are equal to special evaluations of the Tutte polynomial (e.g., the total number of circuit-cocircuit reversal classes equals t(M;1,1)t(M;1,1), the number of bases of the matroid). By relating these classes to activity classes studied by the first author and Las Vergnas, we give an alternative proof of the above results and a proof of the converse statements that these equalities fail whenever the underlying matroid is not regular. Hence we extend the above results to an equivalence of matroidal properties, thereby giving a new characterization of regular matroids.Comment: 7 pages. v2: simplified proof, with new statements concerning other special evaluations of the Tutte polynomia
    • …
    corecore