949 research outputs found

    Max-Weight Revisited: Sequences of Non-Convex Optimisations Solving Convex Optimisations

    Get PDF
    We investigate the connections between max-weight approaches and dual subgradient methods for convex optimisation. We find that strong connections exist and we establish a clean, unifying theoretical framework that includes both max-weight and dual subgradient approaches as special cases. Our analysis uses only elementary methods, and is not asymptotic in nature. It also allows us to establish an explicit and direct connection between discrete queue occupancies and Lagrange multipliers.Comment: convex optimisation, max-weight scheduling, backpressure, subgradient method

    Allocation of Heterogeneous Resources of an IoT Device to Flexible Services

    Full text link
    Internet of Things (IoT) devices can be equipped with multiple heterogeneous network interfaces. An overwhelmingly large amount of services may demand some or all of these interfaces' available resources. Herein, we present a precise mathematical formulation of assigning services to interfaces with heterogeneous resources in one or more rounds. For reasonable instance sizes, the presented formulation produces optimal solutions for this computationally hard problem. We prove the NP-Completeness of the problem and develop two algorithms to approximate the optimal solution for big instance sizes. The first algorithm allocates the most demanding service requirements first, considering the average cost of interfaces resources. The second one calculates the demanding resource shares and allocates the most demanding of them first by choosing randomly among equally demanding shares. Finally, we provide simulation results giving insight into services splitting over different interfaces for both cases.Comment: IEEE Internet of Things Journa

    Fair Allocation of Utilities in Multirate Multicast Networks: A Framework for Unifying Diverse Fairness Objectives

    Get PDF
    We study fairness in a multicast network. We assume that different receivers of the same session can receive information at different rates. We study fair allocation of utilities, where utility of a bandwidth is an arbitrary function of the bandwidth. The utility function is not strictly increasing, nor continuous in general. We discuss fairness issues in this general context. Fair allocation of utilities can be modeled as a nonlinear optimization problem. However, nonlinear optimization techniques do not terminate in a finite number of iterations in general. We present an algorithm for computing a fair utility allocation. Using specific fairness properties, we show that this algorithm attains global convergence and yields a fair allocation in polynomial number of iterations

    Techniques for Decentralized and Dynamic Resource Allocation

    Get PDF
    abstract: This thesis investigates three different resource allocation problems, aiming to achieve two common goals: i) adaptivity to a fast-changing environment, ii) distribution of the computation tasks to achieve a favorable solution. The motivation for this work relies on the modern-era proliferation of sensors and devices, in the Data Acquisition Systems (DAS) layer of the Internet of Things (IoT) architecture. To avoid congestion and enable low-latency services, limits have to be imposed on the amount of decisions that can be centralized (i.e. solved in the ``cloud") and/or amount of control information that devices can exchange. This has been the motivation to develop i) a lightweight PHY Layer protocol for time synchronization and scheduling in Wireless Sensor Networks (WSNs), ii) an adaptive receiver that enables Sub-Nyquist sampling, for efficient spectrum sensing at high frequencies, and iii) an SDN-scheme for resource-sharing across different technologies and operators, to harmoniously and holistically respond to fluctuations in demands at the eNodeB' s layer. The proposed solution for time synchronization and scheduling is a new protocol, called PulseSS, which is completely event-driven and is inspired by biological networks. The results on convergence and accuracy for locally connected networks, presented in this thesis, constitute the theoretical foundation for the protocol in terms of performance guarantee. The derived limits provided guidelines for ad-hoc solutions in the actual implementation of the protocol. The proposed receiver for Compressive Spectrum Sensing (CSS) aims at tackling the noise folding phenomenon, e.g., the accumulation of noise from different sub-bands that are folded, prior to sampling and baseband processing, when an analog front-end aliasing mixer is utilized. The sensing phase design has been conducted via a utility maximization approach, thus the scheme derived has been called Cognitive Utility Maximization Multiple Access (CUMMA). The framework described in the last part of the thesis is inspired by stochastic network optimization tools and dynamics. While convergence of the proposed approach remains an open problem, the numerical results here presented suggest the capability of the algorithm to handle traffic fluctuations across operators, while respecting different time and economic constraints. The scheme has been named Decomposition of Infrastructure-based Dynamic Resource Allocation (DIDRA).Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore