873 research outputs found

    Towards learning domain-independent planning heuristics

    Full text link
    Automated planning remains one of the most general paradigms in Artificial Intelligence, providing means of solving problems coming from a wide variety of domains. One of the key factors restricting the applicability of planning is its computational complexity resulting from exponentially large search spaces. Heuristic approaches are necessary to solve all but the simplest problems. In this work, we explore the possibility of obtaining domain-independent heuristic functions using machine learning. This is a part of a wider research program whose objective is to improve practical applicability of planning in systems for which the planning domains evolve at run time. The challenge is therefore the learning of (corrections of) domain-independent heuristics that can be reused across different planning domains.Comment: Accepted for the IJCAI-17 Workshop on Architectures for Generality and Autonom

    On Solving the Rubik's Cube with Domain-Independent Planners Using Standard Representations

    Full text link
    Rubik's Cube (RC) is a well-known and computationally challenging puzzle that has motivated AI researchers to explore efficient alternative representations and problem-solving methods. The ideal situation for planning here is that a problem be solved optimally and efficiently represented in a standard notation using a general-purpose solver and heuristics. The fastest solver today for RC is DeepCubeA with a custom representation, and another approach is with Scorpion planner with State-Action-Space+ (SAS+) representation. In this paper, we present the first RC representation in the popular PDDL language so that the domain becomes more accessible to PDDL planners, competitions, and knowledge engineering tools, and is more human-readable. We then bridge across existing approaches and compare performance. We find that in one comparable experiment, DeepCubeA (trained with 12 RC actions) solves all problems with varying complexities, albeit only 78.5% are optimal plans. For the same problem set, Scorpion with SAS+ representation and pattern database heuristics solves 61.50% problems optimally, while FastDownward with PDDL representation and FF heuristic solves 56.50% problems, out of which 79.64% of the plans generated were optimal. Our study provides valuable insights into the trade-offs between representational choice and plan optimality that can help researchers design future strategies for challenging domains combining general-purpose solving methods (planning, reinforcement learning), heuristics, and representations (standard or custom)

    Structural Agnostic Modeling: Adversarial Learning of Causal Graphs

    Full text link
    A new causal discovery method, Structural Agnostic Modeling (SAM), is presented in this paper. Leveraging both conditional independencies and distributional asymmetries in the data, SAM aims at recovering full causal models from continuous observational data along a multivariate non-parametric setting. The approach is based on a game between dd players estimating each variable distribution conditionally to the others as a neural net, and an adversary aimed at discriminating the overall joint conditional distribution, and that of the original data. An original learning criterion combining distribution estimation, sparsity and acyclicity constraints is used to enforce the end-to-end optimization of the graph structure and parameters through stochastic gradient descent. Besides the theoretical analysis of the approach in the large sample limit, SAM is extensively experimentally validated on synthetic and real data

    Surrogate Search As a Way to Combat Harmful Effects of Ill-behaved Evaluation Functions

    Full text link
    Recently, several researchers have found that cost-based satisficing search with A* often runs into problems. Although some "work arounds" have been proposed to ameliorate the problem, there has been little concerted effort to pinpoint its origin. In this paper, we argue that the origins of this problem can be traced back to the fact that most planners that try to optimize cost also use cost-based evaluation functions (i.e., f(n) is a cost estimate). We show that cost-based evaluation functions become ill-behaved whenever there is a wide variance in action costs; something that is all too common in planning domains. The general solution to this malady is what we call a surrogatesearch, where a surrogate evaluation function that doesn't directly track the cost objective, and is resistant to cost-variance, is used. We will discuss some compelling choices for surrogate evaluation functions that are based on size rather that cost. Of particular practical interest is a cost-sensitive version of size-based evaluation function -- where the heuristic estimates the size of cheap paths, as it provides attractive quality vs. speed tradeoffsComment: arXiv admin note: substantial text overlap with arXiv:1103.368

    Detecting and quantifying causal associations in large nonlinear time series datasets

    Get PDF
    Identifying causal relationships and quantifying their strength from observational time series data are key problems in disciplines dealing with complex dynamical systems such as the Earth system or the human body. Data-driven causal inference in such systems is challenging since datasets are often high dimensional and nonlinear with limited sample sizes. Here, we introduce a novel method that flexibly combines linear or nonlinear conditional independence tests with a causal discovery algorithm to estimate causal networks from large-scale time series datasets. We validate the method on time series of well-understood physical mechanisms in the climate system and the human heart and using large-scale synthetic datasets mimicking the typical properties of real-world data. The experiments demonstrate that our method outperforms state-of-the-art techniques in detection power, which opens up entirely new possibilities to discover and quantify causal networks from time series across a range of research fields
    • …
    corecore