1,356 research outputs found

    Unifying geometric, probabilistic, and potential field approaches to multi-robot deployment

    Get PDF
    This paper unifies and extends several different existing strategies for deploying groups of robots in an environment. A cost function is proposed that can be specialized to represent widely different multi-robot deployment tasks. It is shown that geometric and probabilistic deployment strategies that were previously seen as distinct are in fact related through this cost function, and differ only in the value of a single parameter. These strategies are also related to potential field-based controllers through the same cost function, though the relationship is not as simple. Distributed controllers are then obtained from the gradient of the cost function and are proved to converge to a local minimum of the cost function. Three special cases are derived as examples: a Voronoi-based coverage control task, a probabilistic minimum variance task, and a task using artificial potential fields. The performance of the three different controllers are compared in simulation. A result is also proved linking multi-robot deployment to non-convex optimization problems, and multi-robot consensus (i.e. all robots moving to the same point) to convex optimization problems, which implies that multi-robot deployment is inherently more difficult than multi-robot consensus.United States. Office of Naval Research. Multidisciplinary University Research Initiative. Smarts (Grant N00014-09-1-1051)United States. Army Research Office. Multidisciplinary University Research Initiative. Scalable Swarms of Autonomous Robots and Mobile Sensors Project (Grant W911NF-05-1-0219)National Science Foundation (U.S.) (Grant IIS-0513755)National Science Foundation (U.S.) (Grant IIS-0426838)National Science Foundation (U.S.) (Grant CNS-0520305)National Science Foundation (U.S.) (Grant CNS-0707601)National Science Foundation (U.S.) (Grant EFRI-0735953

    A Survey and Analysis of Multi-Robot Coordination

    Get PDF
    International audienceIn the field of mobile robotics, the study of multi-robot systems (MRSs) has grown significantly in size and importance in recent years. Having made great progress in the development of the basic problems concerning single-robot control, many researchers shifted their focus to the study of multi-robot coordination. This paper presents a systematic survey and analysis of the existing literature on coordination, especially in multiple mobile robot systems (MMRSs). A series of related problems have been reviewed, which include a communication mechanism, a planning strategy and a decision-making structure. A brief conclusion and further research perspectives are given at the end of the paper

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Adaptive Algorithms for Coverage Control and Space Partitioning in Mobile Robotic Networks

    Get PDF
    We consider deployment problems where a mobile robotic network must optimize its configuration in a distributed way in order to minimize a steady-state cost function that depends on the spatial distribution of certain probabilistic events of interest. Three classes of problems are discussed in detail: coverage control problems, spatial partitioning problems, and dynamic vehicle routing problems. Moreover, we assume that the event distribution is a priori unknown, and can only be progressively inferred from the observation of the location of the actual event occurrences. For each problem we present distributed stochastic gradient algorithms that optimize the performance objective. The stochastic gradient view simplifies and generalizes previously proposed solutions, and is applicable to new complex scenarios, for example adaptive coverage involving heterogeneous agents. Finally, our algorithms often take the form of simple distributed rules that could be implemented on resource-limited platforms

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world
    • …
    corecore