4,547 research outputs found

    A mosaic of eyes

    Get PDF
    Autonomous navigation is a traditional research topic in intelligent robotics and vehicles, which requires a robot to perceive its environment through onboard sensors such as cameras or laser scanners, to enable it to drive to its goal. Most research to date has focused on the development of a large and smart brain to gain autonomous capability for robots. There are three fundamental questions to be answered by an autonomous mobile robot: 1) Where am I going? 2) Where am I? and 3) How do I get there? To answer these basic questions, a robot requires a massive spatial memory and considerable computational resources to accomplish perception, localization, path planning, and control. It is not yet possible to deliver the centralized intelligence required for our real-life applications, such as autonomous ground vehicles and wheelchairs in care centers. In fact, most autonomous robots try to mimic how humans navigate, interpreting images taken by cameras and then taking decisions accordingly. They may encounter the following difficulties

    A Depth Space Approach for Evaluating Distance to Objects -- with Application to Human-Robot Collision Avoidance

    Get PDF
    We present a novel approach to estimate the distance between a generic point in the Cartesian space and objects detected with a depth sensor. This information is crucial in many robotic applications, e.g., for collision avoidance, contact point identification, and augmented reality. The key idea is to perform all distance evaluations directly in the depth space. This allows distance estimation by considering also the frustum generated by the pixel on the depth image, which takes into account both the pixel size and the occluded points. Different techniques to aggregate distance data coming from multiple object points are proposed. We compare the Depth space approach with the commonly used Cartesian space or Configuration space approaches, showing that the presented method provides better results and faster execution times. An application to human-robot collision avoidance using a KUKA LWR IV robot and a Microsoft Kinect sensor illustrates the effectiveness of the approach

    Perception-aware Path Planning

    Full text link
    In this paper, we give a double twist to the problem of planning under uncertainty. State-of-the-art planners seek to minimize the localization uncertainty by only considering the geometric structure of the scene. In this paper, we argue that motion planning for vision-controlled robots should be perception aware in that the robot should also favor texture-rich areas to minimize the localization uncertainty during a goal-reaching task. Thus, we describe how to optimally incorporate the photometric information (i.e., texture) of the scene, in addition to the the geometric one, to compute the uncertainty of vision-based localization during path planning. To avoid the caveats of feature-based localization systems (i.e., dependence on feature type and user-defined thresholds), we use dense, direct methods. This allows us to compute the localization uncertainty directly from the intensity values of every pixel in the image. We also describe how to compute trajectories online, considering also scenarios with no prior knowledge about the map. The proposed framework is general and can easily be adapted to different robotic platforms and scenarios. The effectiveness of our approach is demonstrated with extensive experiments in both simulated and real-world environments using a vision-controlled micro aerial vehicle.Comment: 16 pages, 20 figures, revised version. Conditionally accepted for IEEE Transactions on Robotic

    High-level environment representations for mobile robots

    Get PDF
    In most robotic applications we are faced with the problem of building a digital representation of the environment that allows the robot to autonomously complete its tasks. This internal representation can be used by the robot to plan a motion trajectory for its mobile base and/or end-effector. For most man-made environments we do not have a digital representation or it is inaccurate. Thus, the robot must have the capability of building it autonomously. This is done by integrating into an internal data structure incoming sensor measurements. For this purpose, a common solution consists in solving the Simultaneous Localization and Mapping (SLAM) problem. The map obtained by solving a SLAM problem is called ``metric'' and it describes the geometric structure of the environment. A metric map is typically made up of low-level primitives (like points or voxels). This means that even though it represents the shape of the objects in the robot workspace it lacks the information of which object a surface belongs to. Having an object-level representation of the environment has the advantage of augmenting the set of possible tasks that a robot may accomplish. To this end, in this thesis we focus on two aspects. We propose a formalism to represent in a uniform manner 3D scenes consisting of different geometric primitives, including points, lines and planes. Consequently, we derive a local registration and a global optimization algorithm that can exploit this representation for robust estimation. Furthermore, we present a Semantic Mapping system capable of building an \textit{object-based} map that can be used for complex task planning and execution. Our system exploits effective reconstruction and recognition techniques that require no a-priori information about the environment and can be used under general conditions

    Learning and Acting in Peripersonal Space: Moving, Reaching, and Grasping

    Get PDF
    The young infant explores its body, its sensorimotor system, and the immediately accessible parts of its environment, over the course of a few months creating a model of peripersonal space useful for reaching and grasping objects around it. Drawing on constraints from the empirical literature on infant behavior, we present a preliminary computational model of this learning process, implemented and evaluated on a physical robot. The learning agent explores the relationship between the configuration space of the arm, sensing joint angles through proprioception, and its visual perceptions of the hand and grippers. The resulting knowledge is represented as the peripersonal space (PPS) graph, where nodes represent states of the arm, edges represent safe movements, and paths represent safe trajectories from one pose to another. In our model, the learning process is driven by intrinsic motivation. When repeatedly performing an action, the agent learns the typical result, but also detects unusual outcomes, and is motivated to learn how to make those unusual results reliable. Arm motions typically leave the static background unchanged, but occasionally bump an object, changing its static position. The reach action is learned as a reliable way to bump and move an object in the environment. Similarly, once a reliable reach action is learned, it typically makes a quasi-static change in the environment, moving an object from one static position to another. The unusual outcome is that the object is accidentally grasped (thanks to the innate Palmar reflex), and thereafter moves dynamically with the hand. Learning to make grasps reliable is more complex than for reaches, but we demonstrate significant progress. Our current results are steps toward autonomous sensorimotor learning of motion, reaching, and grasping in peripersonal space, based on unguided exploration and intrinsic motivation.Comment: 35 pages, 13 figure
    • …
    corecore