877 research outputs found

    Integration between WSNs and Internet based on Address Internetworking for Web Services

    Get PDF
    There has been an increasing interest in wireless sensor networks as a new technology to realize ubiquitous computing, and demands for internetworking technology between the wireless sensor networks and the Internet which is based on IP address. For this purpose, this paper proposes and implements the internetworking scheme which assigns IP addresses to the sensor nodes and internetworks based on the gateway-based integration for internetworking between the wireless sensor networks and the Internet. That is, the proposed scheme makes the access to the wireless sensor networks be serviced as like the Web service with internetworking Internet IP address and ZigBee address which is allocated to the sensor node in wireless sensor networks. For validating the proposed scheme, we made experiments using Berkeley TinyOS, Mica Motes, dual protocol stack based on ZigBee and IP, and showed the service result using browser (IE) and IPv6 address based on DNS

    A Survey on Virtualization of Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization

    Gateway architectures for service oriented application-level gateways

    Full text link

    Bridging light applications to the IP domain

    Get PDF
    With the advent of LED lights as well as lighting systems that have communication capabilities, new lighting setups and scenarios have become possible. New standards of the ZigBee Cluster Library (ZCL) in lighting systems describe the protocols for controlling and monitoring devices in such systems. In this paper we examine the problem of bridging this ZigBee domain to the IP domain such as allowing standardized access and easy integration of advanced lighting scenarios. We define two access levels for the bridging: a message-based API, which translates the protocol and which allows integration in arbitrary networked environments and an HTTP interface that gives access to an embedded web application for direct control purposes. We show a realization of this design on a prototype board of ZigBee and IP modules along with measurements on response times

    Federated Sensor Network architectural design for the Internet of Things (IoT)

    Get PDF
    An information technology that can combine the physical world and virtual world is desired. The Internet of Things (IoT) is a concept system that uses Radio Frequency Identification (RFID), WSN and barcode scanners to sense and to detect physical objects and events. This information is shared with people on the Internet. With the announcement of the Smarter Planet concept by IBM, the problem of how to share this data was raised. However, the original design of WSN aims to provide environment monitoring and control within a small scale local network. It cannot meet the demands of the IoT because there is a lack of multi-connection functionality with other WSNs and upper level applications. As various standards of WSNs provide information for different purposes, a hybrid system that gives a complete answer by combining all of them could be promising for future IoT applications. This thesis is on the subject of `Federated Sensor Network' design and architectural development for the Internet of Things. A Federated Sensor Network (FSN) is a system that integrates WSNs and the Internet. Currently, methods of integrating WSNs and the Internet can follow one of three main directions: a Front-End Proxy solution, a Gateway solution or a TCP/IP Overlay solution. Architectures based on the ideas from all three directions are presented in this thesis; this forms a comprehensive body of research on possible Federated Sensor Network architecture designs. In addition, a fully compatible technology for the sensor network application, namely the Sensor Model Language (SensorML), has been reviewed and embedded into our FSN systems. The IoT as a new concept is also comprehensively described and the major technical issues discussed. Finally, a case study of the IoT in logistic management for emergency response is given. Proposed FSN architectures based on the Gateway solution are demonstrated through hardware implementation and lab tests. A demonstration of the 6LoWPAN enabled federated sensor network based on the TCP/IP Overlay solution presents a good result for the iNET localization and tracking project. All the tests of the designs have verified feasibility and achieve the target of the IoT concept

    Do we all really know what a fog node is? Current trends towards an open definition

    Get PDF
    Fog computing has emerged as a promising technology that can bring cloud applications closer to the physical IoT devices at the network edge. While it is widely known what cloud computing is, how data centers can build the cloud infrastructure and how applications can make use of this infrastructure, there is no common picture on what fog computing and particularly a fog node, as its main building block, really is. One of the first attempts to define a fog node was made by Cisco, qualifying a fog computing system as a “mini-cloud” located at the edge of the network and implemented through a variety of edge devices, interconnected by a variety, mostly wireless, communication technologies. Thus, a fog node would be the infrastructure implementing the said mini-cloud. Other proposals have their own definition of what a fog node is, usually in relation to a specific edge device, a specific use case or an application. In this paper, we first survey the state of the art in technologies for fog computing nodes, paying special attention to the contributions that analyze the role edge devices play in the fog node definition. We summarize and compare the concepts, lessons learned from their implementation, and end up showing how a conceptual framework is emerging towards a unifying fog node definition. We focus on core functionalities of a fog node as well as in the accompanying opportunities and challenges towards their practical realization in the near future.Postprint (author's final draft

    Information and Communication Technologies for Integrated Operations of Ships

    Get PDF
    Over the past three decades, information and communication technologies have filled our daily life with great comfort and convenience. As the technology keeps evolving, user expectations for more challenging cases that can benefit from advanced information and communication technologies are increasing, e.g., the scenario of Integrated Operations (IO) for ships in the maritime domain. However, to realize integrated operations for ships is a complex task that involves addressing problems such as interoperability among heterogeneous operation applications and connectivity within harsh maritime communication environments. The common approach was to tackle these challenges separately by service integration and communication integration, respectively: each utilizes optimized and independent implementations. Separate solutions work fine within their own contexts, whereas conflicts and inconsistencies can be identified by integrating them together for specific maritime scenarios. Therefore, connection between separate solutions needs to be studied. In this dissertation, we first take a look at complex systems to obtain useful methodologies applied to integrated operations for ships. Then we study IO of ships from different perspectives and divide the complex task into sub-tasks. We explore separate approaches to these sub-tasks, examine the connection in between, resolve inconsistencies if there are any, and continue the exploration process till a compatible and integrated solution can be accomplished. In general, this journey represents our argument for an integration-oriented complex system development approach. In concrete, it shows the way on how to achieve IO of ships by both providing connectivity in harsh communication environments and allowing interoperability among heterogeneous operation applications, and most importantly by ensuring the synergy in between. This synergy also gives hints on the evolution towards a next generation network architecture for the future Internet
    • …
    corecore