1,976 research outputs found

    Unifying Color and Texture Transfer for Predictive Appearance Manipulation

    Get PDF
    International audienceRecent color transfer methods use local information to learn the transformation from a source to an exemplar image, and then transfer this appearance change to a target image. These solutions achieve very successful results for general mood changes, e.g., changing the appearance of an image from ``sunny'' to ``overcast''. However, such methods have a hard time creating new image content, such as leaves on a bare tree. Texture transfer, on the other hand, can synthesize such content but tends to destroy image structure. We propose the first algorithm that unifies color and texture transfer, outperforming both by leveraging their respective strengths. A key novelty in our approach resides in teasing apart appearance changes that can be modeled simply as changes in color versus those that require new image content to be generated. Our method starts with an analysis phase which evaluates the success of color transfer by comparing the exemplar with the source. This analysis then drives a selective, iterative texture transfer algorithm that simultaneously predicts the success of color transfer on the target and synthesizes new content where needed. We demonstrate our unified algorithm by transferring large temporal changes between photographs, such as change of season -- e.g., leaves on bare trees or piles of snow on a street -- and flooding

    WESPE: Weakly Supervised Photo Enhancer for Digital Cameras

    Full text link
    Low-end and compact mobile cameras demonstrate limited photo quality mainly due to space, hardware and budget constraints. In this work, we propose a deep learning solution that translates photos taken by cameras with limited capabilities into DSLR-quality photos automatically. We tackle this problem by introducing a weakly supervised photo enhancer (WESPE) - a novel image-to-image Generative Adversarial Network-based architecture. The proposed model is trained by under weak supervision: unlike previous works, there is no need for strong supervision in the form of a large annotated dataset of aligned original/enhanced photo pairs. The sole requirement is two distinct datasets: one from the source camera, and one composed of arbitrary high-quality images that can be generally crawled from the Internet - the visual content they exhibit may be unrelated. Hence, our solution is repeatable for any camera: collecting the data and training can be achieved in a couple of hours. In this work, we emphasize on extensive evaluation of obtained results. Besides standard objective metrics and subjective user study, we train a virtual rater in the form of a separate CNN that mimics human raters on Flickr data and use this network to get reference scores for both original and enhanced photos. Our experiments on the DPED, KITTI and Cityscapes datasets as well as pictures from several generations of smartphones demonstrate that WESPE produces comparable or improved qualitative results with state-of-the-art strongly supervised methods

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Artistic Path Space Editing of Physically Based Light Transport

    Get PDF
    Die Erzeugung realistischer Bilder ist ein wichtiges Ziel der Computergrafik, mit Anwendungen u.a. in der Spielfilmindustrie, Architektur und Medizin. Die physikalisch basierte Bildsynthese, welche in letzter Zeit anwendungsübergreifend weiten Anklang findet, bedient sich der numerischen Simulation des Lichttransports entlang durch die geometrische Optik vorgegebener Ausbreitungspfade; ein Modell, welches für übliche Szenen ausreicht, Photorealismus zu erzielen. Insgesamt gesehen ist heute das computergestützte Verfassen von Bildern und Animationen mit wohlgestalteter und theoretisch fundierter Schattierung stark vereinfacht. Allerdings ist bei der praktischen Umsetzung auch die Rücksichtnahme auf Details wie die Struktur des Ausgabegeräts wichtig und z.B. das Teilproblem der effizienten physikalisch basierten Bildsynthese in partizipierenden Medien ist noch weit davon entfernt, als gelöst zu gelten. Weiterhin ist die Bildsynthese als Teil eines weiteren Kontextes zu sehen: der effektiven Kommunikation von Ideen und Informationen. Seien es nun Form und Funktion eines Gebäudes, die medizinische Visualisierung einer Computertomografie oder aber die Stimmung einer Filmsequenz -- Botschaften in Form digitaler Bilder sind heutzutage omnipräsent. Leider hat die Verbreitung der -- auf Simulation ausgelegten -- Methodik der physikalisch basierten Bildsynthese generell zu einem Verlust intuitiver, feingestalteter und lokaler künstlerischer Kontrolle des finalen Bildinhalts geführt, welche in vorherigen, weniger strikten Paradigmen vorhanden war. Die Beiträge dieser Dissertation decken unterschiedliche Aspekte der Bildsynthese ab. Dies sind zunächst einmal die grundlegende Subpixel-Bildsynthese sowie effiziente Bildsyntheseverfahren für partizipierende Medien. Im Mittelpunkt der Arbeit stehen jedoch Ansätze zum effektiven visuellen Verständnis der Lichtausbreitung, die eine lokale künstlerische Einflussnahme ermöglichen und gleichzeitig auf globaler Ebene konsistente und glaubwürdige Ergebnisse erzielen. Hierbei ist die Kernidee, Visualisierung und Bearbeitung des Lichts direkt im alle möglichen Lichtpfade einschließenden "Pfadraum" durchzuführen. Dies steht im Gegensatz zu Verfahren nach Stand der Forschung, die entweder im Bildraum arbeiten oder auf bestimmte, isolierte Beleuchtungseffekte wie perfekte Spiegelungen, Schatten oder Kaustiken zugeschnitten sind. Die Erprobung der vorgestellten Verfahren hat gezeigt, dass mit ihnen real existierende Probleme der Bilderzeugung für Filmproduktionen gelöst werden können

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Microgravity: A Teacher's Guide With Activities in Science, Mathematics, and Technology

    Get PDF
    The purpose of this curriculum supplement guide is to define and explain microgravity and show how microgravity can help us learn about the phenomena of our world. The front section of the guide is designed to provide teachers of science, mathematics, and technology at many levels with a foundation in microgravity science and applications. It begins with background information for the teacher on what microgravity is and how it is created. This is followed with information on the domains of microgravity science research; biotechnology, combustion science, fluid physics, fundamental physics, materials science, and microgravity research geared toward exploration. The background section concludes with a history of microgravity research and the expectations microgravity scientists have for research on the International Space Station. Finally, the guide concludes with a suggested reading list, NASA educational resources including electronic resources, and an evaluation questionnaire

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    One-Shot Imitation Learning: A Pose Estimation Perspective

    Full text link
    In this paper, we study imitation learning under the challenging setting of: (1) only a single demonstration, (2) no further data collection, and (3) no prior task or object knowledge. We show how, with these constraints, imitation learning can be formulated as a combination of trajectory transfer and unseen object pose estimation. To explore this idea, we provide an in-depth study on how state-of-the-art unseen object pose estimators perform for one-shot imitation learning on ten real-world tasks, and we take a deep dive into the effects that camera calibration, pose estimation error, and spatial generalisation have on task success rates. For videos, please visit https://www.robot-learning.uk/pose-estimation-perspective.Comment: Published at the 7th Conference on Robot Learning (CoRL 2023). For more details please visit https://www.robot-learning.uk/pose-estimation-perspectiv

    Material perception and action : The role of material properties in object handling

    Get PDF
    This dissertation is about visual perception of material properties and their role in preparation for object handling. Usually before an object is touched or picked-up we estimate its size and shape based on visual features to plan the grip size of our hand. After we have touched the object, the grip size is adjusted according to the provided haptic feedback and the object is handled safely. Similarly, we anticipate the required grip force to handle the object without slippage, based on its visual features and prior experience with similar objects. Previous studies on object handling have mostly examined object characteristics that are typical for object recognition, e.g., size, shape, weight, but in the recent years there has been a growing interest in object characteristics that are more typical to the type of material the object is made from. That said, in a series of studies we investigated the role of perceived material properties in decision-making and object handling, in which both digitally rendered materials and real objects made of different types of materials were presented to human subjects and a humanoid robot. Paper I is a reach-to-grasp study where human subjects were examined using motion capture technology. In this study, participants grasped and lifted paper cups that varied in appearance (i.e., matte vs. glossy) and weight. Here we were interested in both the temporal and spatial components of prehension to examine the role of material properties in grip preparation, and how visual features contribute to inferred hardness before haptic feedback has become available. We found the temporal and spatial components were not exclusively governed by the expected weight of the paper cups, instead glossiness and expected hardness has a significant role as well. In paper II, which is a follow-up on Paper I, we investigated the grip force component of prehension using the same experimental stimuli as used in paper I. In a similar experimental set up, using force sensors we examined the early grip force magnitudes applied by human subjects when grasping and lifting the same paper cups as used in Paper I. Here we found that early grip force scaling was not only guided by the object weight, but the visual characteristics of the material (i.e., matte vs. glossy) had a role as well. Moreover, the results suggest that grip force scaling during the initial object lifts is guided by expected hardness that is to some extend based on visual material properties. Paper III is a visual judgment task where psychophysical measurements were used to examine how the material properties, roughness and glossiness, influence perceived bounce height and consequently perceived hardness. In a paired-comparison task, human subjects observed a bouncing ball bounce on various surface planes and judged their bounce height. Here we investigated, what combination of surface properties, i.e., roughness or glossiness, makes a surface plane to be perceived bounceable. The results demonstrate that surface planes with rough properties are believed to afford higher bounce heights for the bouncing ball, compared to surface planes with smooth properties. Interestingly, adding shiny properties to the rough and smooth surface planes, reduced the judged difference, as if surface planes with gloss are believed to afford higher bounce heights irrespective of how smooth or rough the surface plane is beneath. This suggests that perceived bounce height involves not only the physical elements of the bounce height, but also the visual characteristics of the material properties of the surface planes the ball bounces on. In paper IV we investigated the development of material knowledge using a robotic system. A humanoid robot explored real objects made of different types of materials, using both camera and haptic systems. The objects varied in visual appearances (e.g., texture, color, shape, size), weight, and hardness, and in two experiments, the robot picked up and placed the experimental objects several times using its arm. Here we used the haptic signals from the servos controlling the arm and the shoulder of the robot, to obtain measurements of the weight and hardness of the objects, and the camera system to collect data on the visual features of the objects. After the robot had repeatedly explored the objects, an associative learning model was created based on the training data to demonstrate how the robotic system could produce multi-modal mapping between the visual and haptic features of the objects. In sum, in this thesis we show that visual material properties and prior knowledge of how materials look like and behave like has a significant role in action planning
    corecore