199 research outputs found

    Avoidance Control on Time Scales

    Full text link
    We consider dynamic systems on time scales under the control of two agents. One of the agents desires to keep the state of the system out of a given set regardless of the other agent's actions. Leitmann's avoidance conditions are proved to be valid for dynamic systems evolving on an arbitrary time scale.Comment: Revised edition in JOTA format. To appear in J. Optim. Theory Appl. 145 (2010), no. 3. In Pres

    Set-Valued Analysis

    Get PDF
    This Special Issue contains eight original papers with a high impact in various domains of set-valued analysis. Set-valued analysis has made remarkable progress in the last 70 years, enriching itself continuously with new concepts, important results, and special applications. Different problems arising in the theory of control, economics, game theory, decision making, nonlinear programming, biomathematics, and statistics have strengthened the theoretical base and the specific techniques of set-valued analysis. The consistency of its theoretical approach and the multitude of its applications have transformed set-valued analysis into a reference field of modern mathematics, which attracts an impressive number of researchers

    Qualitative Properties of Stochastic Hybrid Systems and Applications

    Get PDF
    Hybrid systems with or without stochastic noise and with or without time delay are addressed and the qualitative properties of these systems are investigated. The main contribution of this thesis is distributed in three parts. In Part I, nonlinear stochastic impulsive systems with time delay (SISD) with variable impulses are formulated and some of the fundamental properties of the systems, such as existence of local and global solution, uniqueness, and forward continuation of the solution are established. After that, stability and input-to-state stability (ISS) properties of SISD with fixed impulses are developed, where Razumikhin methodology is used. These results are then carried over to discussed the same qualitative properties of large scale SISD. Applications to automated control systems and control systems with faulty actuators are used to justify the proposed approaches. Part II is devoted to address ISS of stochastic ordinary and delay switched systems. To achieve a variety stability-like results, multiple Lyapunov technique as a tool is applied. Moreover, to organize the switching among the system modes, a newly developed initial-state-dependent dwell-time switching law and Markovian switching are separately employed. Part III deals with systems of differential equations with piecewise constant arguments with and without random noise. These systems are viewed as a special type of hybrid systems. Existence and uniqueness results are first obtained. Then, comparison principles are established which are later applied to develop some stability results of the systems

    Stochastic Resonance and Related Topics

    Get PDF
    The stochastic resonance (SR) is the phenomenon which can emerge in nonlinear dynamic systems. In general, it is related with a bistable nonlinear system of Duffing type under additive excitation combining deterministic periodic force and Gaussian white noise. It manifests as a stable quasiperiodic interwell hopping between both stable states with a small random perturbation. Classical definition and basic features of SR are regarded. The most important methods of investigation outlined are: analytical, semi-analytical, and numerical procedures of governing physical systems or relevant Fokker-Planck equation. Stochastic simulation is mentioned and experimental way of results verification is recommended. Some areas in Engineering Dynamics related with SR are presented together with a particular demonstration observed in the aeroelastic stability. Interaction of stationary and quasiperiodic parts of the response is discussed. Some nonconventional definitions are outlined concerning alternative operators and driving processes are highlighted. The chapter shows a large potential of specific basic, applied and industrial research in SR. This strategy enables to formulate new ideas for both development of nonconventional measures for vibration damping and employment of SR in branches, where it represents an operating mode of the system itself. Weaknesses and empty areas where the research effort of SR should be oriented are indicated

    Control of chaos in nonlinear circuits and systems

    Get PDF
    Nonlinear circuits and systems, such as electronic circuits (Chapter 5), power converters (Chapter 6), human brains (Chapter 7), phase lock loops (Chapter 8), sigma delta modulators (Chapter 9), etc, are found almost everywhere. Understanding nonlinear behaviours as well as control of these circuits and systems are important for real practical engineering applications. Control theories for linear circuits and systems are well developed and almost complete. However, different nonlinear circuits and systems could exhibit very different behaviours. Hence, it is difficult to unify a general control theory for general nonlinear circuits and systems. Up to now, control theories for nonlinear circuits and systems are still very limited. The objective of this book is to review the state of the art chaos control methods for some common nonlinear circuits and systems, such as those listed in the above, and stimulate further research and development in chaos control for nonlinear circuits and systems. This book consists of three parts. The first part of the book consists of reviews on general chaos control methods. In particular, a time-delayed approach written by H. Huang and G. Feng is reviewed in Chapter 1. A master slave synchronization problem for chaotic Lur’e systems is considered. A delay independent and delay dependent synchronization criteria are derived based on the H performance. The design of the time delayed feedback controller can be accomplished by means of the feasibility of linear matrix inequalities. In Chapter 2, a fuzzy model based approach written by H.K. Lam and F.H.F. Leung is reviewed. The synchronization of chaotic systems subject to parameter uncertainties is considered. A chaotic system is first represented by the fuzzy model. A switching controller is then employed to synchronize the systems. The stability conditions in terms of linear matrix inequalities are derived based on the Lyapunov stability theory. The tracking performance and parameter design of the controller are formulated as a generalized eigenvalue minimization problem which is solved numerically via some convex programming techniques. In Chapter 3, a sliding mode control approach written by Y. Feng and X. Yu is reviewed. Three kinds of sliding mode control methods, traditional sliding mode control, terminal sliding mode control and non-singular terminal sliding mode control, are employed for the control of a chaotic system to realize two different control objectives, namely to force the system states to converge to zero or to track desired trajectories. Observer based chaos synchronizations for chaotic systems with single nonlinearity and multi-nonlinearities are also presented. In Chapter 4, an optimal control approach written by C.Z. Wu, C.M. Liu, K.L. Teo and Q.X. Shao is reviewed. Systems with nonparametric regression with jump points are considered. The rough locations of all the possible jump points are identified using existing kernel methods. A smooth spline function is used to approximate each segment of the regression function. A time scaling transformation is derived so as to map the undecided jump points to fixed points. The approximation problem is formulated as an optimization problem and solved via existing optimization tools. The second part of the book consists of reviews on general chaos controls for continuous-time systems. In particular, chaos controls for Chua’s circuits written by L.A.B. Tôrres, L.A. Aguirre, R.M. Palhares and E.M.A.M. Mendes are discussed in Chapter 5. An inductorless Chua’s circuit realization is presented, as well as some practical issues, such as data analysis, mathematical modelling and dynamical characterization, are discussed. The tradeoff among the control objective, the control energy and the model complexity is derived. In Chapter 6, chaos controls for pulse width modulation current mode single phase H-bridge inverters written by B. Robert, M. Feki and H.H.C. Iu are discussed. A time delayed feedback controller is used in conjunction with the proportional controller in its simple form as well as in its extended form to stabilize the desired periodic orbit for larger values of the proportional controller gain. This method is very robust and easy to implement. In Chapter 7, chaos controls for epileptiform bursting in the brain written by M.W. Slutzky, P. Cvitanovic and D.J. Mogul are discussed. Chaos analysis and chaos control algorithms for manipulating the seizure like behaviour in a brain slice model are discussed. The techniques provide a nonlinear control pathway for terminating or potentially preventing epileptic seizures in the whole brain. The third part of the book consists of reviews on general chaos controls for discrete-time systems. In particular, chaos controls for phase lock loops written by A.M. Harb and B.A. Harb are discussed in Chapter 8. A nonlinear controller based on the theory of backstepping is designed so that the phase lock loops will not be out of lock. Also, the phase lock loops will not exhibit Hopf bifurcation and chaotic behaviours. In Chapter 9, chaos controls for sigma delta modulators written by B.W.K. Ling, C.Y.F. Ho and J.D. Reiss are discussed. A fuzzy impulsive control approach is employed for the control of the sigma delta modulators. The local stability criterion and the condition for the occurrence of limit cycle behaviours are derived. Based on the derived conditions, a fuzzy impulsive control law is formulated so that the occurrence of the limit cycle behaviours, the effect of the audio clicks and the distance between the state vectors and an invariant set are minimized supposing that the invariant set is nonempty. The state vectors can be bounded within any arbitrary nonempty region no matter what the input step size, the initial condition and the filter parameters are. The editors are much indebted to the editor of the World Scientific Series on Nonlinear Science, Prof. Leon Chua, and to Senior Editor Miss Lakshmi Narayan for their help and congenial processing of the edition

    Computational Inverse Problems

    Get PDF
    Inverse problem typically deal with the identification of unknown quantities from indirect measurements and appear in many areas in technology, medicine, biology, finance, and econometrics. The computational solution of such problems is a very active, interdisciplinary field with close connections to optimization, control theory, differential equations, asymptotic analysis, statistics, and probability. The focus of this workshop was on hybrid methods, model reduction, regularization in Banach spaces, and statistical approaches

    Output-feedback design for non-smooth mechanical systems : control synthesis and experiments

    Get PDF
    In this thesis, the focus is on two control problems for non-smooth systems. Firstly, the disturbance attenuation problem for piecewise linear (PWL) and piecewise affine (PWA) systems is studied. Here, we focus on applications in the field of perturbed flexible mechanical systems with PWL restoring characteristics. Secondly, the stabilization problem for Lur’e type systems with set-valued nonlinearities is examined. In the latter context, the focus is on the application area of mechanical systems with set-valued friction characteristics, where the friction is non-collocated with the control action. In this thesis, in order to deal with both the disturbance attenuation problem and the stabilization problem, observer-based output-feedback control strategies are proposed. More specifically, the disturbance attenuation problem for perturbed PWL and PWA mechanical systems is an important control problem. Namely, the attenuation of the disturbances acting on these systems is important because it avoids damages to the structures and allows for increased system performance. Classical examples of mechanical systems with PWL and PWA restoring characteristics are tower cranes, suspension bridges, snubbers on solar panels on satellites, floating platforms for oil exploration, etc. Therefore, a controller design strategy is proposed for a class of perturbed PWL/PWA systems based on the notions of convergence and input-to-state convergence. The control design aims at the performance of such control designs in terms of disturbance attenuation for the specific class of periodic disturbances and the more general class of bounded disturbances. Roughly speaking, a system that is convergent, has, for each bounded disturbance, a unique globally asymptotically stable steady-state solution that is bounded for all time. A system is input-to-state convergent for a class of bounded disturbances if it is convergent and ISS with respect to the system’s unique steady-state solution. The input-to-state convergence property is instrumental in constructing output-feedback schemes. In the present work, we render a system convergent by means of feedback. To guarantee the practical applicability of the convergence-based controllers, a saturation constraint is proposed that provides a guaranteed upper bound on the control input, given an upper bound for the disturbances and a set of initial conditions. Next, an ultimate bound for the system state given a bound on the disturbances is proposed. Finally, performance measures based on computed steady-state responses for a specific class of disturbances (in our case harmonic disturbances) are presented. The motivation for the choice of harmonic disturbances lies in the fact that in engineering practice many disturbances can be approximated by a finite sum of harmonic signals (or are even harmonic as in systems with mass-unbalance). The ultimate objective of this part of the thesis is the implementation of the controller design strategy in an experimental environment, which implies that only measurements of a limited number of state variables will be available. Therefore, observers for PWL/PWA systems are used and a result that combines the controller and the observer in an outputfeedback strategy is provided. The convergent-based controller design strategy is applied to an experimental piecewise linear system and its effectiveness is shown in experiments. The stabilization of mechanical systems with friction is another challenging unsolved control problem because the presence of friction can induce unwanted phenomena such as self-sustained vibrations, chatter and squeal. These phenomena are unwanted in many engineering applications because they can destabilize a system and/or limit the system performance. Classical examples of mechanical systems with friction are industrial robots, drilling rigs, turbine blade dampers, accurate mirror positioning systems on satellites, printers and many more. Therefore, a control design strategy is proposed for a class of discontinuous systems; namely Lur’e systems with set-valued mappings. Here the focus is on the application area of mechanical systems with discontinuous friction. These systems exhibit unwanted (stick-slip) limit cycling which we aim to avoid entirely by the control design. In this work, we consider the problem of noncollocated friction and actuation, which rules out the application of common friction compensation techniques. The control design strategy proposed here is based on the notion of passivity and the Popov criterion. In addition to that, it is shown that the resulting closed-loop system is robust with respect to uncertainties in the discontinuous friction model under some mild constraints for the model that describes the friction. Once again, the aim is to implement this strategy on a mechanical experimental set-up with limited measurements. Therefore, an observer for Lur’e systems with multi-valued mappings is used as a state estimator and a result that combines the controller and the observer in an output-feedback strategy is provided. The passivity-based controller design strategy is implemented on a dynamic rotor system with friction in one of its components. The implemented output-feedback controller is evaluated in both simulations and experiments. Generally speaking, to show the strengths, weaknesses and potential of output-feedback controllers beyond their theoretical importance, it is indispensable to evaluate them in experimental and industrial setups. As such the presented case studies can be considered as benchmarks for the proposed observer-based controller designs for non-smooth and discontinuous systems. The value of non-smooth and discontinuous models and observer-based controllers is also evidenced by this work, as it demonstrates the effectiveness for real-life applications
    • …
    corecore