19,972 research outputs found

    A practical framework for data collection in wireless sensor networks

    Full text link
    Optimizing energy consumption for extending the lifetime in wireless sensor networks is of dominant importance. Groups of autonomous robots and unmanned aerial vehicles (UAVs) acting as mobile data collectors are utilized to minimize the energy expenditure of the sensor nodes by approaching the sensors and collecting their buffers via single hop communication, rather than using multihop routing to forward the buffers to the base station. This paper models the sensor network and the mobile collectors as a system-of-systems, and defines all levels and types of interactions. A practical framework that facilitates deploying heterogeneous mobiles without prior knowledge about the sensor network is presented. Realizing the framework is done through simulation experiments and tested against several performance metrics.<br /

    Coverage, Continuity and Visual Cortical Architecture

    Get PDF
    The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure

    The variance of a poisson process of domains

    Get PDF
    A familiar relation links the densities that result for the intersection of a convex body and straight lines under uniform isotropic randomness with those that result under weighted randomness. An extension of this relation to the intersection of more general domains is utilized to obtain the variance of the n-dimensional measure of the intersection of two bodies under uniform isotropic randomness. The formula for the variance contains the point-pair distance distributions for the two domains — or the closely related geometric reduction factors. The result is applied to derive the variance of the intersection of a Boolean scheme, i.e. a stationary, isotropic Poisson process of domains, with a fixed sampling region

    Indirect Image Registration with Large Diffeomorphic Deformations

    Full text link
    The paper adapts the large deformation diffeomorphic metric mapping framework for image registration to the indirect setting where a template is registered against a target that is given through indirect noisy observations. The registration uses diffeomorphisms that transform the template through a (group) action. These diffeomorphisms are generated by solving a flow equation that is defined by a velocity field with certain regularity. The theoretical analysis includes a proof that indirect image registration has solutions (existence) that are stable and that converge as the data error tends so zero, so it becomes a well-defined regularization method. The paper concludes with examples of indirect image registration in 2D tomography with very sparse and/or highly noisy data.Comment: 43 pages, 4 figures, 1 table; revise
    • 

    corecore