479 research outputs found

    Entropy Solution Theory for Fractional Degenerate Convection-Diffusion Equations

    Get PDF
    We study a class of degenerate convection diffusion equations with a fractional nonlinear diffusion term. These equations are natural generalizations of anomalous diffusion equations, fractional conservations laws, local convection diffusion equations, and some fractional Porous medium equations. In this paper we define weak entropy solutions for this class of equations and prove well-posedness under weak regularity assumptions on the solutions, e.g. uniqueness is obtained in the class of bounded integrable functions. Then we introduce a monotone conservative numerical scheme and prove convergence toward an Entropy solution in the class of bounded integrable functions of bounded variation. We then extend the well-posedness results to non-local terms based on general L\'evy type operators, and establish some connections to fully non-linear HJB equations. Finally, we present some numerical experiments to give the reader an idea about the qualitative behavior of solutions of these equations

    An Investigation of High-Order Shock-Capturing Methods for Computational Aeroacoustics

    Get PDF
    Topics covered include: Low-dispersion scheme for nonlinear acoustic waves in nonuniform flow; Computation of acoustic scattering by a low-dispersion scheme; Algorithmic extension of low-dispersion scheme and modeling effects for acoustic wave simulation; The accuracy of shock capturing in two spatial dimensions; Using high-order methods on lower-order geometries; and Computational considerations for the simulation of discontinuous flows

    A NSFD method for the singularly perturbed Burgers-Huxley equation

    Get PDF
    This article focuses on a numerical solution of the singularly perturbed Burgers-Huxley equation. The simultaneous presence of a singular perturbation parameter and the nonlinearity raise the challenge of finding a reliable and efficient numerical solution for this equation via the classical numerical methods. To overcome this challenge, a nonstandard finite difference (NSFD) scheme is developed in the following manner. The time variable is discretized using the backward Euler method. This gives rise to a system of nonlinear ordinary differential equations which are then dealt with using the concept of nonlocal approximation. Through a rigorous error analysis, the proposed scheme has been shown to be parameter-uniform convergent. Simulations conducted on two numerical examples confirm the theoretical result. A comparison with other methods in terms of accuracy and computational cost reveals the superiority of the proposed scheme

    Higher order numerical methods for singular perturbation problems

    Get PDF
    Philosophiae Doctor - PhDIn recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We find that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis.South Afric
    corecore