2,377 research outputs found

    How the Experts Algorithm Can Help Solve LPs Online

    Full text link
    We consider the problem of solving packing/covering LPs online, when the columns of the constraint matrix are presented in random order. This problem has received much attention and the main focus is to figure out how large the right-hand sides of the LPs have to be (compared to the entries on the left-hand side of the constraints) to allow (1+ϵ)(1+\epsilon)-approximations online. It is known that the right-hand sides have to be Ω(ϵ2logm)\Omega(\epsilon^{-2} \log m) times the left-hand sides, where mm is the number of constraints. In this paper we give a primal-dual algorithm that achieve this bound for mixed packing/covering LPs. Our algorithms construct dual solutions using a regret-minimizing online learning algorithm in a black-box fashion, and use them to construct primal solutions. The adversarial guarantee that holds for the constructed duals helps us to take care of most of the correlations that arise in the algorithm; the remaining correlations are handled via martingale concentration and maximal inequalities. These ideas lead to conceptually simple and modular algorithms, which we hope will be useful in other contexts.Comment: An extended abstract appears in the 22nd European Symposium on Algorithms (ESA 2014

    Robust Algorithms for the Secretary Problem

    Get PDF
    In classical secretary problems, a sequence of n elements arrive in a uniformly random order, and we want to choose a single item, or a set of size K. The random order model allows us to escape from the strong lower bounds for the adversarial order setting, and excellent algorithms are known in this setting. However, one worrying aspect of these results is that the algorithms overfit to the model: they are not very robust. Indeed, if a few "outlier" arrivals are adversarially placed in the arrival sequence, the algorithms perform poorly. E.g., Dynkin’s popular 1/e-secretary algorithm is sensitive to even a single adversarial arrival: if the adversary gives one large bid at the beginning of the stream, the algorithm does not select any element at all. We investigate a robust version of the secretary problem. In the Byzantine Secretary model, we have two kinds of elements: green (good) and red (rogue). The values of all elements are chosen by the adversary. The green elements arrive at times uniformly randomly drawn from [0,1]. The red elements, however, arrive at adversarially chosen times. Naturally, the algorithm does not see these colors: how well can it solve secretary problems? We show that selecting the highest value red set, or the single largest green element is not possible with even a small fraction of red items. However, on the positive side, we show that these are the only bad cases, by giving algorithms which get value comparable to the value of the optimal green set minus the largest green item. (This benchmark reminds us of regret minimization and digital auctions, where we subtract an additive term depending on the "scale" of the problem.) Specifically, we give an algorithm to pick K elements, which gets within (1-ε) factor of the above benchmark, as long as K ≥ poly(ε^{-1} log n). We extend this to the knapsack secretary problem, for large knapsack size K. For the single-item case, an analogous benchmark is the value of the second-largest green item. For value-maximization, we give a poly log^* n-competitive algorithm, using a multi-layered bucketing scheme that adaptively refines our estimates of second-max over time. For probability-maximization, we show the existence of a good randomized algorithm, using the minimax principle. We hope that this work will spur further research on robust algorithms for the secretary problem, and for other problems in sequential decision-making, where the existing algorithms are not robust and often tend to overfit to the model.ISSN:1868-896

    Hindsight Learning for MDPs with Exogenous Inputs

    Full text link
    Many resource management problems require sequential decision-making under uncertainty, where the only uncertainty affecting the decision outcomes are exogenous variables outside the control of the decision-maker. We model these problems as Exo-MDPs (Markov Decision Processes with Exogenous Inputs) and design a class of data-efficient algorithms for them termed Hindsight Learning (HL). Our HL algorithms achieve data efficiency by leveraging a key insight: having samples of the exogenous variables, past decisions can be revisited in hindsight to infer counterfactual consequences that can accelerate policy improvements. We compare HL against classic baselines in the multi-secretary and airline revenue management problems. We also scale our algorithms to a business-critical cloud resource management problem -- allocating Virtual Machines (VMs) to physical machines, and simulate their performance with real datasets from a large public cloud provider. We find that HL algorithms outperform domain-specific heuristics, as well as state-of-the-art reinforcement learning methods.Comment: 53 pages, 6 figure
    corecore