74 research outputs found

    Singular Continuation: Generating Piece-wise Linear Approximations to Pareto Sets via Global Analysis

    Full text link
    We propose a strategy for approximating Pareto optimal sets based on the global analysis framework proposed by Smale (Dynamical systems, New York, 1973, pp. 531-544). The method highlights and exploits the underlying manifold structure of the Pareto sets, approximating Pareto optima by means of simplicial complexes. The method distinguishes the hierarchy between singular set, Pareto critical set and stable Pareto critical set, and can handle the problem of superposition of local Pareto fronts, occurring in the general nonconvex case. Furthermore, a quadratic convergence result in a suitable set-wise sense is proven and tested in a number of numerical examples.Comment: 29 pages, 12 figure

    A quantum behaved particle swarm approach to multi-objective optimization

    Get PDF
    Many real-world optimization problems have multiple objectives that have to be optimized simultaneously. Although a great deal of effort has been devoted to solve multi-objective optimization problems, the problem is still open and the related issues still attract significant research efforts. Quantum-behaved Particle Swarm Optimization (QPSO) is a recently proposed population based metaheuristic that relies on quantum mechanics principles. Since its inception, much effort has been devoted to develop improved versions of QPSO designed for single objective optimization. However, many of its advantages are not yet available for multi-objective optimization. In this thesis, we develop a new framework for multi-objective problems using QPSO. The contribution of the work is threefold. First a hybrid leader selection method has been developed to compute the attractor of a given particle. Second, an archiving strategy has been proposed to control the growth of the archive size. Third, the developed framework has been further extended to handle constrained optimization problems. A comprehensive investigation of the developed framework has been carried out under different selection, archiving and constraint handling strategies. The developed framework is found to be a competitive technique to tackle this type of problems when compared against the state-of-the-art methods in multi-objective optimization

    A Bayesian approach to constrained single- and multi-objective optimization

    Get PDF
    This article addresses the problem of derivative-free (single- or multi-objective) optimization subject to multiple inequality constraints. Both the objective and constraint functions are assumed to be smooth, non-linear and expensive to evaluate. As a consequence, the number of evaluations that can be used to carry out the optimization is very limited, as in complex industrial design optimization problems. The method we propose to overcome this difficulty has its roots in both the Bayesian and the multi-objective optimization literatures. More specifically, an extended domination rule is used to handle objectives and constraints in a unified way, and a corresponding expected hyper-volume improvement sampling criterion is proposed. This new criterion is naturally adapted to the search of a feasible point when none is available, and reduces to existing Bayesian sampling criteria---the classical Expected Improvement (EI) criterion and some of its constrained/multi-objective extensions---as soon as at least one feasible point is available. The calculation and optimization of the criterion are performed using Sequential Monte Carlo techniques. In particular, an algorithm similar to the subset simulation method, which is well known in the field of structural reliability, is used to estimate the criterion. The method, which we call BMOO (for Bayesian Multi-Objective Optimization), is compared to state-of-the-art algorithms for single- and multi-objective constrained optimization

    STATISTICAL MACHINE LEARNING BASED MODELING FRAMEWORK FOR DESIGN SPACE EXPLORATION AND RUN-TIME CROSS-STACK ENERGY OPTIMIZATION FOR MANY-CORE PROCESSORS

    Get PDF
    The complexity of many-core processors continues to grow as a larger number of heterogeneous cores are integrated on a single chip. Such systems-on-chip contains computing structures ranging from complex out-of-order cores, simple in-order cores, digital signal processors (DSPs), graphic processing units (GPUs), application specific processors, hardware accelerators, I/O subsystems, network-on-chip interconnects, and large caches arranged in complex hierarchies. While the industry focus is on putting higher number of cores on a single chip, the key challenge is to optimally architect these many-core processors such that performance, energy and area constraints are satisfied. The traditional approach to processor design through extensive cycle accurate simulations are ill-suited for designing many-core processors due to the large microarchitecture design space that must be explored. Additionally it is hard to optimize such complex processors and the applications that run on them statically at design time such that performance and energy constraints are met under dynamically changing operating conditions. The dissertation establishes statistical machine learning based modeling framework that enables the efficient design and operation of many-core processors that meets performance, energy and area constraints. We apply the proposed framework to rapidly design the microarchitecture of a many-core processor for multimedia, computer graphics rendering, finance, and data mining applications derived from the Parsec benchmark. We further demonstrate the application of the framework in the joint run-time adaptation of both the application and microarchitecture such that energy availability constraints are met

    Hybrid behavioural-based multi-objective space trajectory optimization

    Get PDF
    In this chapter we present a hybridization of a stochastic based search approach for multi-objective optimization with a deterministic domain decomposition of the solution space. Prior to the presentation of the algorithm we introduce a general formulation of the optimization problem that is suitable to describe both single and multi-objective problems. The stochastic approach, based on behaviorism, combinedwith the decomposition of the solutions pace was tested on a set of standard multi-objective optimization problems and on a simple but representative case of space trajectory design

    Bayesian multi-objective optimisation with mixed analytical and black-box functions: application to tissue engineering

    Get PDF
    Tissue engineering and regenerative medicine looks at improving or restoring biological tissue function in humans and animals. We consider optimising neotissue growth in a three-dimensional scaffold during dynamic perfusion bioreactor culture, in the context of bone tissue engineering. The goal is to choose design variables that optimise two conflicting objectives: (i) maximising neotissue growth and (ii) minimising operating cost. We make novel extensions to Bayesian multi-objective optimisation in the case of one analytical objective function and one black-box, i.e. simulation-based, objective function. The analytical objective represents operating cost while the black-box neotissue growth objective comes from simulating a system of partial differential equations. The resulting multi-objective optimisation method determines the trade-off in the variables between neotissue growth and operating cost. Our method outperforms the most common approach in literature, genetic algorithms, in terms of data efficiency, on both the tissue engineering example and standard test functions. The resulting method is highly applicable to real-world problems combining black-box models with easy-to-quantify objectives like cost

    Efficient Approximation of Black-Box Functions and Pareto Sets.

    Get PDF
    In the case of time-consuming simulation models or other so-called black-box functions, we determine a metamodel which approximates the relation between the input- and output-variables of the simulation model. To solve multi-objective optimization problems, we approximate the Pareto set, i.e. the set of Pareto optimal solutions for which it is not possible to improve one objective without deteriorating another.

    Quantification d’incertitude sur fronts de Pareto et stratégies pour l’optimisation bayésienne en grande dimension, avec applications en conception automobile

    Get PDF
    This dissertation deals with optimizing expensive or time-consuming black-box functionsto obtain the set of all optimal compromise solutions, i.e. the Pareto front. In automotivedesign, the evaluation budget is severely limited by numerical simulation times of the considered physical phenomena. In this context, it is common to resort to “metamodels” (models of models) of the numerical simulators, especially using Gaussian processes. They enable adding sequentially new observations while balancing local search and exploration. Complementing existing multi-objective Expected Improvement criteria, we propose to estimate the position of the whole Pareto front along with a quantification of the associated uncertainty, from conditional simulations of Gaussian processes. A second contribution addresses this problem from a different angle, using copulas to model the multi-variate cumulative distribution function. To cope with a possibly high number of variables, we adopt the REMBO algorithm. From a randomly selected direction, defined by a matrix, it allows a fast optimization when only a few number of variables are actually influential, but unknown. Several improvements are proposed, such as a dedicated covariance kernel, a selection procedure for the low dimensional domain and of the random directions, as well as an extension to the multi-objective setup. Finally, an industrial application in car crash-worthiness demonstrates significant benefits in terms of performance and number of simulations required. It has also been used to test the R package GPareto developed during this thesis.Cette thèse traite de l’optimisation multiobjectif de fonctions coûteuses, aboutissant à laconstruction d’un front de Pareto représentant l’ensemble des compromis optimaux. En conception automobile, le budget d’évaluations est fortement limité par les temps de simulation numérique des phénomènes physiques considérés. Dans ce contexte, il est courant d’avoir recours à des « métamodèles » (ou modèles de modèles) des simulateurs numériques, en se basant notamment sur des processus gaussiens. Ils permettent d’ajouter séquentiellement des observations en conciliant recherche locale et exploration. En complément des critères d’optimisation existants tels que des versions multiobjectifs du critère d’amélioration espérée, nous proposons d’estimer la position de l’ensemble du front de Pareto avec une quantification de l’incertitude associée, à partir de simulations conditionnelles de processus gaussiens. Une deuxième contribution reprend ce problème à partir de copules. Pour pouvoir traiter le cas d’un grand nombre de variables d’entrées, nous nous basons sur l’algorithme REMBO. Par un tirage aléatoire directionnel, défini par une matrice, il permet de trouver un optimum rapidement lorsque seules quelques variables sont réellement influentes (mais inconnues). Plusieurs améliorations sont proposées, elles comprennent un noyau de covariance dédié, une sélection du domaine de petite dimension et des directions aléatoires mais aussi l’extension au casmultiobjectif. Enfin, un cas d’application industriel en crash a permis d’obtenir des gainssignificatifs en performance et en nombre de calculs requis, ainsi que de tester le package R GPareto développé dans le cadre de cette thèse
    corecore