165 research outputs found

    Geometric Numerical Integration

    Get PDF
    The subject of this workshop was numerical methods that preserve geometric properties of the flow of an ordinary or partial differential equation. This was complemented by the question as to how structure preservation affects the long-time behaviour of numerical methods

    Uniformly accurate numerical schemes for the nonlinear Dirac equation in the nonrelativistic limit regime

    Get PDF
    We apply the two-scale formulation approach to propose uniformly accurate (UA) schemes for solving the nonlinear Dirac equation in the nonrelativistic limit regime. The nonlinear Dirac equation involves two small scales Δ\varepsilon and Δ2\varepsilon^2 with Δ→0\varepsilon\to0 in the nonrelativistic limit regime. The small parameter causes high oscillations in time which brings severe numerical burden for classical numerical methods. We transform our original problem as a two-scale formulation and present a general strategy to tackle a class of highly oscillatory problems involving the two small scales Δ\varepsilon and Δ2\varepsilon^2. Suitable initial data for the two-scale formulation is derived to bound the time derivatives of the augmented solution. Numerical schemes with uniform (with respect to Δ∈(0,1]\varepsilon\in (0,1]) spectral accuracy in space and uniform first order or second order accuracy in time are proposed. Numerical experiments are done to confirm the UA property.Comment: 22 pages, 6 figures. To appear on Communications in Mathematical Science

    Asymptotic preserving schemes for highly oscillatory kinetic equation

    Full text link
    This work is devoted to the numerical simulation of a Vlasov-Poisson model describing a charged particle beam under the action of a rapidly oscillating external electric field. We construct an Asymptotic Preserving numerical scheme for this kinetic equation in the highly oscillatory limit. This scheme enables to simulate the problem without using any time step refinement technique. Moreover, since our numerical method is not based on the derivation of the simulation of asymptotic models, it works in the regime where the solution does not oscillate rapidly, and in the highly oscillatory regime as well. Our method is based on a "double-scale" reformulation of the initial equation, with the introduction of an additional periodic variable

    Asymptotically stable particle-in-cell methods for the Vlasov-Poisson system with a strong external magnetic field

    Get PDF
    International audienceThis paper deals with the numerical resolution of the Vlasov-Poissonsystem with a strong external magnetic field by Particle-In-Cell(PIC) methods. In this regime, classical PIC methods are subject tostability constraints on the time and space steps related to the smallLarmor radius and plasma frequency. Here, we propose anasymptotic-preserving PIC scheme which is not subjected to theselimitations. Our approach is based on first and higher order semi-implicit numericalschemes already validated on dissipative systems. Additionally, when the magnitude of the external magneticfield becomes large, this method provides a consistent PICdiscretization of the guiding-center equation, that is, incompressibleEuler equation in vorticity form. We propose several numerical experiments which provide a solid validation of the method and its underlying concepts

    Nonlinear Evolution Equations: Analysis and Numerics

    Get PDF
    The qualitative theory of nonlinear evolution equations is an important tool for studying the dynamical behavior of systems in science and technology. A thorough understanding of the complex behavior of such systems requires detailed analytical and numerical investigations of the underlying partial differential equations
    • 

    corecore