234 research outputs found

    Realizations of self branched coverings of the 2-sphere

    Full text link
    For a degree d self branched covering of the 2-sphere, a notable combinatorial invariant is an integer partition of 2d -- 2, consisting of the multiplicities of the critical points. A finer invariant is the so called Hurwitz passport. The realization problem of Hurwitz passports remain largely open till today. In this article, we introduce two different types of finer invariants: a bipartite map and an incident matrix. We then settle completely their realization problem by showing that a map, or a matrix, is realized by a branched covering if and only if it satisfies a certain balanced condition. A variant of the bipartite map approach was initiated by W. Thurston. Our results shed some new lights to the Hurwitz passport problem

    On balanced planar graphs, following W. Thurston

    Full text link
    Let f:S2S2f:S^2\to S^2 be an orientation-preserving branched covering map of degree d2d\geq 2, and let Σ\Sigma be an oriented Jordan curve passing through the critical values of ff. Then Γ:=f1(Σ)\Gamma:=f^{-1}(\Sigma) is an oriented graph on the sphere. In a group email discussion in Fall 2010, W. Thurston introduced balanced planar graphs and showed that they combinatorially characterize all such Γ\Gamma, where ff has 2d22d-2 distinct critical values. We give a detailed account of this discussion, along with some examples and an appendix about Hurwitz numbers.Comment: 17 page

    Discrete approaches to quantum gravity in four dimensions

    Get PDF
    The construction of a consistent theory of quantum gravity is a problem in theoretical physics that has so far defied all attempts at resolution. One ansatz to try to obtain a non-trivial quantum theory proceeds via a discretization of space-time and the Einstein action. I review here three major areas of research: gauge-theoretic approaches, both in a path-integral and a Hamiltonian formulation, quantum Regge calculus, and the method of dynamical triangulations, confining attention to work that is strictly four-dimensional, strictly discrete, and strictly quantum in nature.Comment: 33 pages, invited contribution to Living Reviews in Relativity; the author welcomes any comments and suggestion

    Entropy of random coverings and 4D quantum gravity

    Full text link
    We discuss the counting of minimal geodesic ball coverings of nn-dimensional riemannian manifolds of bounded geometry, fixed Euler characteristic and Reidemeister torsion in a given representation of the fundamental group. This counting bears relevance to the analysis of the continuum limit of discrete models of quantum gravity. We establish the conditions under which the number of coverings grows exponentially with the volume, thus allowing for the search of a continuum limit of the corresponding discretized models. The resulting entropy estimates depend on representations of the fundamental group of the manifold through the corresponding Reidemeister torsion. We discuss the sum over inequivalent representations both in the two-dimensional and in the four-dimensional case. Explicit entropy functions as well as significant bounds on the associated critical exponents are obtained in both cases.Comment: 54 pages, latex, no figure

    Finite covers of random 3-manifolds

    Full text link
    A 3-manifold is Haken if it contains a topologically essential surface. The Virtual Haken Conjecture posits that every irreducible 3-manifold with infinite fundamental group has a finite cover which is Haken. In this paper, we study random 3-manifolds and their finite covers in an attempt to shed light on this difficult question. In particular, we consider random Heegaard splittings by gluing two handlebodies by the result of a random walk in the mapping class group of a surface. For this model of random 3-manifold, we are able to compute the probabilities that the resulting manifolds have finite covers of particular kinds. Our results contrast with the analogous probabilities for groups coming from random balanced presentations, giving quantitative theorems to the effect that 3-manifold groups have many more finite quotients than random groups. The next natural question is whether these covers have positive betti number. For abelian covers of a fixed type over 3-manifolds of Heegaard genus 2, we show that the probability of positive betti number is 0. In fact, many of these questions boil down to questions about the mapping class group. We are lead to consider the action of mapping class group of a surface S on the set of quotients pi_1(S) -> Q. If Q is a simple group, we show that if the genus of S is large, then this action is very mixing. In particular, the action factors through the alternating group of each orbit. This is analogous to Goldman's theorem that the action of the mapping class group on the SU(2) character variety is ergodic.Comment: 60 pages; v2: minor changes. v3: minor changes; final versio

    Unified bijections for planar hypermaps with general cycle-length constraints

    Full text link
    We present a general bijective approach to planar hypermaps with two main results. First we obtain unified bijections for all classes of maps or hypermaps defined by face-degree constraints and girth constraints. To any such class we associate bijectively a class of plane trees characterized by local constraints. This unifies and greatly generalizes several bijections for maps and hypermaps. Second, we present yet another level of generalization of the bijective approach by considering classes of maps with non-uniform girth constraints. More precisely, we consider "well-charged maps", which are maps with an assignment of "charges" (real numbers) on vertices and faces, with the constraints that the length of any cycle of the map is at least equal to the sum of the charges of the vertices and faces enclosed by the cycle. We obtain a bijection between charged hypermaps and a class of plane trees characterized by local constraints

    Generic method for bijections between blossoming trees and planar maps

    Full text link
    This article presents a unified bijective scheme between planar maps and blossoming trees, where a blossoming tree is defined as a spanning tree of the map decorated with some dangling half-edges that enable to reconstruct its faces. Our method generalizes a previous construction of Bernardi by loosening its conditions of applications so as to include annular maps, that is maps embedded in the plane with a root face different from the outer face. The bijective construction presented here relies deeply on the theory of \alpha-orientations introduced by Felsner, and in particular on the existence of minimal and accessible orientations. Since most of the families of maps can be characterized by such orientations, our generic bijective method is proved to capture as special cases all previously known bijections involving blossoming trees: for example Eulerian maps, m-Eulerian maps, non separable maps and simple triangulations and quadrangulations of a k-gon. Moreover, it also permits to obtain new bijective constructions for bipolar orientations and d-angulations of girth d of a k-gon. As for applications, each specialization of the construction translates into enumerative by-products, either via a closed formula or via a recursive computational scheme. Besides, for every family of maps described in the paper, the construction can be implemented in linear time. It yields thus an effective way to encode and generate planar maps. In a recent work, Bernardi and Fusy introduced another unified bijective scheme, we adopt here a different strategy which allows us to capture different bijections. These two approaches should be seen as two complementary ways of unifying bijections between planar maps and decorated trees.Comment: 45 pages, comments welcom

    Structuring Free-Form Building Envelopes

    Get PDF
    corecore