251 research outputs found

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Chained segment offsetting for ray-based solid representations

    Get PDF
    International audienceWe present a novel approach to offset solids in the context of fabrication. Our input solids can be given under any representation: boundary meshes, voxels, indicator functions or CSG expressions. The result is a ray-based representation of the offset solid directly used for visualization and fabrication: We never need to recover a boundary mesh in our context. We define the offset solid as a sequence of morphological operations along line segments. This is equivalent to offsetting the surface by a solid defined as a Minkowski sum of segments, also known as a zonotope. A zonotope may be used to approximate the Euclidean ball with precise error bounds. We propose two complementary implementations. The first is dedicated to solids represented by boundary meshes. It performs offsetting by modifying the mesh in sequence. The result is a mesh improper for direct display, but that can be resolved into the correct offset solid through a ray representation. The major advantage of this first approach is that no loss of information – re-sampling – occurs during the offsetting sequence. However, it applies only to boundary meshes and cannot mix sequences of dilations and erosions. Our second implementation is more general as it applies directly to a ray-based representation of any solid and supports any sequence of erosion and dilation along segments. We discuss its fast implementation on modern graphics hardware. Together, the two approaches result in a versatile tool box for the efficient offsetting of solids in the context of fabrication

    Rounding, filleting and smoothing of implicit surfaces

    Get PDF
    © 2017 CAD Solutions, LLC We describe an approach for performing constant radius offsetting and the related operations of filleting, rounding and smoothing for implicit surfaces. The offsetting operation is used as the basic component for defining the remaining operations. These operations are important operations for any modelling system. While it is known how to perform these operations for parametric representation and polygon meshes, there is limited prior work for implicit surfaces and procedural volumetric objects. The proposed approach is based on repeatedly computing the distance to a given implicit surface and its offset surfaces. We illustrate the results obtained by this approach with several examples, including procedurally defined microstructures and CAD objects

    Real-time rendering and simulation of trees and snow

    Get PDF
    Tree models created by an industry used package are exported and the structure extracted in order to procedurally regenerate the geometric mesh, addressing the limitations of the application's standard output. The structure, once extracted, is used to fully generate a high quality skeleton for the tree, individually representing each section in every branch to give the greatest achievable level of freedom of deformation and animation. Around the generated skeleton, a new geometric mesh is wrapped using a single, continuous surface resulting in the removal of intersection based render artefacts. Surface smoothing and enhanced detail is added to the model dynamically using the GPU enhanced tessellation engine. A real-time snow accumulation system is developed to generate snow cover on a dynamic, animated scene. Occlusion techniques are used to project snow accumulating faces and map exposed areas to applied accumulation maps in the form of dynamic textures. Accumulation maps are xed to applied surfaces, allowing moving objects to maintain accumulated snow cover. Mesh generation is performed dynamically during the rendering pass using surface o�setting and tessellation to enhance required detail

    Comparing Slicing Technologies for Digital Light Processing Printing

    Get PDF
    In additive manufacturing (AM), slicing is a crucial step in process planning to convert a computer-aided design (CAD) model to a machine-specific format. Digital light processing (DLP) printing is an important AM process that has a good surface finish, high accuracy, and fabrication speed and is widely applied in many dental and engineering industries. However, as DLP uses images for fabrication different from other toolpath-based processes, its process planning is understudied. Therefore, the main goal of this paper is to study and compare the slicing technologies for DLP printing. Three slicing technologies are compared: contour, voxelization, and ray-tracing

    Vector offset operators for deformable organic objects.

    Get PDF
    Many natural materials and most of living tissues exhibit complex deformable behaviours that may be characteriseda s organic. In computer animation, deformable organic material behaviour is needed for the development of characters and scenes based on living creatures and natural phenomena. This study addresses the problem of deformable organic material behaviour in computer animated objects. The focus of this study is concentrated on problems inherent in geometry based deformation techniques, such as non-intuitive interaction and difficulty in achieving realism. Further, the focus is concentrated on problems inherent in physically based deformation techniques, such as inefficiency and difficulty in enforcing spatial and temporal constraints. The main objective in this study is to find a general and efficient solution to interaction and animation of deformable 3D objects with natural organic material properties and constrainable behaviour. The solution must provide an interaction and animation framework suitable for the creation of animated deformable characters. An implementation of physical organic material properties such as plasticity, elasticity and iscoelasticity can provide the basis for an organic deformation model. An efficient approach to stress and strain control is introduced with a deformation tool named Vector Offset Operator. Stress / strain graphs control the elastoplastic behaviour of the model. Strain creep, stress relaxation and hysteresis graphs control the viscoelastic behaviour of the model. External forces may be applied using motion paths equipped with momentum / time graphs. Finally, spatial and temporal constraints are applied directly on vector operators. The suggested generic deformation tool introduces an intermediate layer between user interaction, deformation, elastoplastic and viscoelastic material behaviour and spatial and temporal constraints. This results in an efficient approach to deformation, frees object representation from deformation, facilitates the application of constraints and enables further development
    • …
    corecore