72 research outputs found

    Uniform clutters and dominating sets of graphs

    Get PDF
    © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A (simple) clutter is a family of pairwise incomparable subsets of a finite set . We say that a clutter is a domination clutter if there is at least a graph such that the collection of the inclusion-minimal dominating sets of vertices of is equal to . Given a clutter , we are interested in determining if it is a domination clutter and, if this is not the case, we want to find domination clutters in some sense close to it: the domination completions of . Here we will focus on the family of clutters containing all the subsets with the same cardinality; the uniform clutters of maximum size. Specifically, we characterize those clutters in this family that are domination clutters and, in any other case, we prove that the domination completions exist. Moreover, we then demonstrate that the clutter is uniquely determined by some of its domination completions, in the sense that can be recovered from some of these domination completions by using a suitable operation between clutters.Peer ReviewedPostprint (author's final draft

    Decomposing 1-Sperner hypergraphs

    Full text link
    A hypergraph is Sperner if no hyperedge contains another one. A Sperner hypergraph is equilizable (resp., threshold) if the characteristic vectors of its hyperedges are the (minimal) binary solutions to a linear equation (resp., inequality) with positive coefficients. These combinatorial notions have many applications and are motivated by the theory of Boolean functions and integer programming. We introduce in this paper the class of 11-Sperner hypergraphs, defined by the property that for every two hyperedges the smallest of their two set differences is of size one. We characterize this class of Sperner hypergraphs by a decomposition theorem and derive several consequences from it. In particular, we obtain bounds on the size of 11-Sperner hypergraphs and their transversal hypergraphs, show that the characteristic vectors of the hyperedges are linearly independent over the reals, and prove that 11-Sperner hypergraphs are both threshold and equilizable. The study of 11-Sperner hypergraphs is motivated also by their applications in graph theory, which we present in a companion paper

    On the associated primes and the depth of the second power of squarefree monomial ideals

    Full text link
    We present combinatorial characterizations for the associated primes of the second power of squarefree monomial ideals and criteria for this power to have positive depth or depth greater than one.Comment: To be published in Journal of Pure and Applied Algebr

    Dually conformal hypergraphs

    Full text link
    Given a hypergraph H\mathcal{H}, the dual hypergraph of H\mathcal{H} is the hypergraph of all minimal transversals of H\mathcal{H}. The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, etc. In this paper we study conformality of dual hypergraphs. While we do not settle the computational complexity status of recognizing this property, we show that the problem is in co-NP and can be solved in polynomial time for hypergraphs of bounded dimension. In the special case of dimension 33, we reduce the problem to 22-Satisfiability. Our approach has an implication in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most kk, for any fixed kk

    Master index to volumes 251-260

    Get PDF

    Completion and decomposition of hypergraphs by domination hypergraphs

    Get PDF
    A graph consists of a finite non-empty set of vertices and a set of unordered pairs of vertices, called edges. A dominating set of a graph is a set of vertices D such that every vertex not in D is adjacent to some vertex in D. A hypergraph on a finite set X is a collection of subsets of X, none of which is a proper subset of another. The domination hypergraph of a graph is the collection of all the minimal vertex dominating sets of the graph. A hypergraph is a domination hypergraph if it is the domination hypergraph of a graph. In general, a hypergraph is not a domination hypergraph. The objective of this work is to approximate a hypergraph by domination hypergraphs and that the optimal approximations determine uniquely the hypergraph. In Chapter 1 we introduce two structures of distributive lattices on the set of hypergraphs on a finite set and also define some operations: the complementary hypergraph and two transversal operations. We study the behavior of these operations with respect to the partial orders and the lattice structures. In Chapter 2 we first introduce several hypergraphs associated with a graph, the most important one being the domination hypergraph, and we establish several relationships among them. Then we compute the domination hypergraph of all graphs, modulo isomorphism, up to order 5. We also investigate when a given hypergraph is a domination hypergraph and find all domination hypergraphs in some cases. In Chapter 3 we present the problem of approximating a hypergraph by domination hypergraphs. We introduce four families of approximations of a hypergraph, which we call completions, depending on which partial order we use and on which side we approximate. We set some sufficient conditions for the existence of completions, introduce the sets of minimal or maximal completions of a hypergraph and study the concept of decomposition, which leads to the decomposition index of a hypergraph. Avoidance properties turn out to be an essential ingredient for the existence of domination completions. In Chapter 4 we give some computational techniques and calculate the upper minimal domination completions and the decomposition indices of some hypergraphs. In the appendices we give the SAGE code developed to perform the calculations of the thesis and we list all the domination hypergraphs of all graphs of order 5 and all the graphs of order 5 with the same domination hypergraph.Un grafo consiste en un conjunto no vacío de vértices y un conjunto de pares no ordenados de vértices denominados aristas. Un conjunto de vértices D es dominante si todo vértice que no esté en D es adyacente a algún vértice de D. Un hipergrafo sobre un conjunto finito X es una colección de subconjuntos de X, ninguno de los cuales es un subconjunto de ningún otro. El hipergrafo de dominación de un grafo es la colección de los conjuntos dominantes minimales del grafo. Un hipergrafo es de dominación si es el hipergrafo de dominación de un grafo. En el capítulo 1 introducimos dos estructuras de retículo distributivo en el conjunto de hipergrafos sobre un conjunto finito y también definimos algunas operaciones: el complementario de un hipergrafo y las dos operaciones de transversal correspondientes a cada una de las estructuras de retículo. Estudiamos el comportamiento de estas operaciones con respecto a los órdenes parciales y las estructuras de retículo. En el capítulo 2 introducimos varios hipergrafos asociados a un grafo, siendo los más importantes el hipergrafo de dominación y el hipergrafo de independencia-dominación del grafo, cuyos elementos son los conjuntos independientes maximales del grafo, y establecemos varias relaciones entre ellos. Después calculamos el hipergrafo de dominación de todos los grafos de orden 5, salvo isomorfismo. También investigamos cuándo un hipergrafo es un hipergrafo de dominación y encontramos todos los hipergrafos de dominación en algunos casos. En el capítulo 3 presentamos el problema de la aproximación de un hipergrafo por hipergrafos de una familia dada. Dado un hipergrafo, definimos cuatro familias de aproximaciones, que llamamos compleciones, dependiendo del orden parcial usado y de por dónde aproximemos el hipergrafo. Establecemos condiciones suficientes para la existencia de compleciones, introducimos los conjuntos de compleciones minimales o maximales de un hipergrafo y estudiamos el concepto de descomposición, que conduce al índice de descomposición de un hipergrafo. Las propiedades de evitación resultan ser cruciales en el estudio de la existencia de descomposiciones. En el capítulo 4 presentamos técnicas de cálculo y calculamos las compleciones de dominación minimales superiores y los índices de descomposición de algunos hipergrafos. En los apéndices damos el código SAGE, desarrollado para realizar los cálculos de esta tesis, y damos la lista de los hipergrafos de dominación de todos los grafos de orden 5 así como todos los grafos de orden 5 que poseen el mismo hipergrafo de dominación
    corecore