38,957 research outputs found

    hp-version time domain boundary elements for the wave equation on quasi-uniform meshes

    Get PDF
    Solutions to the wave equation in the exterior of a polyhedral domain or a screen in R3\mathbb{R}^3 exhibit singular behavior from the edges and corners. We present quasi-optimal hphp-explicit estimates for the approximation of the Dirichlet and Neumann traces of these solutions for uniform time steps and (globally) quasi-uniform meshes on the boundary. The results are applied to an hphp-version of the time domain boundary element method. Numerical examples confirm the theoretical results for the Dirichlet problem both for screens and polyhedral domains.Comment: 41 pages, 11 figure

    The K\"ahler-Ricci flow on surfaces of positive Kodaira dimension

    Full text link
    The existence of K\"ahler-Einstein metrics on a compact K\"ahler manifold has been the subject of intensive study over the last few decades, following Yau's solution to Calabi's conjecture. The Ricci flow, introduced by Richard Hamilton has become one of the most powerful tools in geometric analysis. We study the K\"ahler-Ricci flow on minimal surfaces of Kodaira dimension one and show that the flow collapses and converges to a unique canonical metric on its canonical model. Such a canonical is a generalized K\"ahler-Einstein metric. Combining the results of Cao, Tsuji, Tian and Zhang, we give a metric classification for K\"aher surfaces with a numerical effective canonical line bundle by the K\"ahler-Ricci flow. In general, we propose a program of finding canonical metrics on canonical models of projective varieties of positive Kodaira dimension

    Fast Isogeometric Boundary Element Method based on Independent Field Approximation

    Full text link
    An isogeometric boundary element method for problems in elasticity is presented, which is based on an independent approximation for the geometry, traction and displacement field. This enables a flexible choice of refinement strategies, permits an efficient evaluation of geometry related information, a mixed collocation scheme which deals with discontinuous tractions along non-smooth boundaries and a significant reduction of the right hand side of the system of equations for common boundary conditions. All these benefits are achieved without any loss of accuracy compared to conventional isogeometric formulations. The system matrices are approximated by means of hierarchical matrices to reduce the computational complexity for large scale analysis. For the required geometrical bisection of the domain, a strategy for the evaluation of bounding boxes containing the supports of NURBS basis functions is presented. The versatility and accuracy of the proposed methodology is demonstrated by convergence studies showing optimal rates and real world examples in two and three dimensions.Comment: 32 pages, 27 figure

    D-wave correlated Critical Bose Liquids in two dimensions

    Get PDF
    We develop a description of a new quantum liquid phase of interacting bosons in 2d which possesses relative D-wave two-body correlations and which we call a D-wave Bose Liquid (DBL). The DBL has no broken symmetries, supports gapless boson excitations residing on "Bose surfaces" in momentum space, and exhibits power law correlations with continuously variable exponents. While the DBL can be constructed for bosons in the 2d continuum, the state only respects the point group symmetries of the square lattice. On the lattice the DBL respects all symmetries and does not require a particular filling. But lattice effects allow a second distinct phase, a quasi-local variant which we call a D-wave Local Bose Liquid (DLBL). Remarkably, the DLBL has short-range boson correlations and hence no Bose surfaces, despite sharing gapless excitations and other critical signatures with the DBL. Moreover, both phases are metals with a resistance that vanishes as a power of the temperature. We establish these results by constructing a class of many-particle wavefunctions for the DBL, which are time reversal invariant analogs of Laughlin's quantum Hall wavefunction for bosons at ν=1/2\nu=1/2. A gauge theory formulation leads to a simple mean field theory, and an N-flavor generalization enables incorporation of gauge field fluctuations to deduce the properties of the DBL/DLBL; various equal time correlation functions are in qualitative accord with the properties inferred from the wavefunctions. We also identify a promising Hamiltonian which might manifest the DBL or DLBL, and perform a variational study comparing to other competing phases. We suggest how the DBL wavefunction can be generalized to describe an itinerant non-Fermi liquid phase of electrons on the square lattice with a no double occupancy constraint, a D-wave metal phase.Comment: 33 pages, 17 figure

    Curvature effect on nuclear pasta: Is it helpful for gyroid appearance?

    Full text link
    In supernova cores and neutron star crusts, nuclei are thought to deform to rodlike and slablike shapes, which are often called nuclear pasta. We study the equilibrium properties of the nuclear pasta by using a liquid drop model with curvature corrections. It is confirmed that the curvature effect acts to lower the transition densities between different shapes. We also examine the gyroid structure, which was recently suggested as a different type of nuclear pasta by analogy with the polymer systems. The gyroid structure investigated in this paper is approximately formulated as an extension of the periodic minimal surface whose mean curvature vanishes. In contrast to our expectations, we find from the present approximate formulation that the curvature corrections act to slightly disfavor the appearance of the gyroid structure. By comparing the energy corrections in the gyroid phase and the hypothetical phases composed of d-dimensional spheres, where d is a general dimensionality, we show that the gyroid is unlikely to belong to a family of the generalized dimensional spheres.Comment: 14 pages, 8 figure
    corecore