2,172 research outputs found

    Faster SDP hierarchy solvers for local rounding algorithms

    Full text link
    Convex relaxations based on different hierarchies of linear/semi-definite programs have been used recently to devise approximation algorithms for various optimization problems. The approximation guarantee of these algorithms improves with the number of {\em rounds} rr in the hierarchy, though the complexity of solving (or even writing down the solution for) the rr'th level program grows as nΩ(r)n^{\Omega(r)} where nn is the input size. In this work, we observe that many of these algorithms are based on {\em local} rounding procedures that only use a small part of the SDP solution (of size nO(1)2O(r)n^{O(1)} 2^{O(r)} instead of nΩ(r)n^{\Omega(r)}). We give an algorithm to find the requisite portion in time polynomial in its size. The challenge in achieving this is that the required portion of the solution is not fixed a priori but depends on other parts of the solution, sometimes in a complicated iterative manner. Our solver leads to nO(1)2O(r)n^{O(1)} 2^{O(r)} time algorithms to obtain the same guarantees in many cases as the earlier nO(r)n^{O(r)} time algorithms based on rr rounds of the Lasserre hierarchy. In particular, guarantees based on O(logn)O(\log n) rounds can be realized in polynomial time. We develop and describe our algorithm in a fairly general abstract framework. The main technical tool in our work, which might be of independent interest in convex optimization, is an efficient ellipsoid algorithm based separation oracle for convex programs that can output a {\em certificate of infeasibility with restricted support}. This is used in a recursive manner to find a sequence of consistent points in nested convex bodies that "fools" local rounding algorithms.Comment: 30 pages, 8 figure

    Solving Factored MDPs with Hybrid State and Action Variables

    Full text link
    Efficient representations and solutions for large decision problems with continuous and discrete variables are among the most important challenges faced by the designers of automated decision support systems. In this paper, we describe a novel hybrid factored Markov decision process (MDP) model that allows for a compact representation of these problems, and a new hybrid approximate linear programming (HALP) framework that permits their efficient solutions. The central idea of HALP is to approximate the optimal value function by a linear combination of basis functions and optimize its weights by linear programming. We analyze both theoretical and computational aspects of this approach, and demonstrate its scale-up potential on several hybrid optimization problems

    Distribution-Aware Sampling and Weighted Model Counting for SAT

    Full text link
    Given a CNF formula and a weight for each assignment of values to variables, two natural problems are weighted model counting and distribution-aware sampling of satisfying assignments. Both problems have a wide variety of important applications. Due to the inherent complexity of the exact versions of the problems, interest has focused on solving them approximately. Prior work in this area scaled only to small problems in practice, or failed to provide strong theoretical guarantees, or employed a computationally-expensive maximum a posteriori probability (MAP) oracle that assumes prior knowledge of a factored representation of the weight distribution. We present a novel approach that works with a black-box oracle for weights of assignments and requires only an {\NP}-oracle (in practice, a SAT-solver) to solve both the counting and sampling problems. Our approach works under mild assumptions on the distribution of weights of satisfying assignments, provides strong theoretical guarantees, and scales to problems involving several thousand variables. We also show that the assumptions can be significantly relaxed while improving computational efficiency if a factored representation of the weights is known.Comment: This is a full version of AAAI 2014 pape

    Flexible constrained sampling with guarantees for pattern mining

    Get PDF
    Pattern sampling has been proposed as a potential solution to the infamous pattern explosion. Instead of enumerating all patterns that satisfy the constraints, individual patterns are sampled proportional to a given quality measure. Several sampling algorithms have been proposed, but each of them has its limitations when it comes to 1) flexibility in terms of quality measures and constraints that can be used, and/or 2) guarantees with respect to sampling accuracy. We therefore present Flexics, the first flexible pattern sampler that supports a broad class of quality measures and constraints, while providing strong guarantees regarding sampling accuracy. To achieve this, we leverage the perspective on pattern mining as a constraint satisfaction problem and build upon the latest advances in sampling solutions in SAT as well as existing pattern mining algorithms. Furthermore, the proposed algorithm is applicable to a variety of pattern languages, which allows us to introduce and tackle the novel task of sampling sets of patterns. We introduce and empirically evaluate two variants of Flexics: 1) a generic variant that addresses the well-known itemset sampling task and the novel pattern set sampling task as well as a wide range of expressive constraints within these tasks, and 2) a specialized variant that exploits existing frequent itemset techniques to achieve substantial speed-ups. Experiments show that Flexics is both accurate and efficient, making it a useful tool for pattern-based data exploration.Comment: Accepted for publication in Data Mining & Knowledge Discovery journal (ECML/PKDD 2017 journal track
    corecore