77 research outputs found

    Proceedings for the ICASE Workshop on Heterogeneous Boundary Conditions

    Get PDF
    Domain Decomposition is a complex problem with many interesting aspects. The choice of decomposition can be made based on many different criteria, and the choice of interface of internal boundary conditions are numerous. The various regions under study may have different dynamical balances, indicating that different physical processes are dominating the flow in these regions. This conference was called in recognition of the need to more clearly define the nature of these complex problems. This proceedings is a collection of the presentations and the discussion groups

    Error analysis of the Galerkin FEM in L 2 -based norms for problems with layers: On the importance, conception and realization of balancing

    Get PDF
    In the present thesis it is shown that the most natural choice for a norm for the analysis of the Galerkin FEM, namely the energy norm, fails to capture the boundary layer functions arising in certain reaction-diffusion problems. In view of a formal Definition such reaction-diffusion problems are not singularly perturbed with respect to the energy norm. This observation raises two questions: 1. Does the Galerkin finite element method on standard meshes yield satisfactory approximations for the reaction-diffusion problem with respect to the energy norm? 2. Is it possible to strengthen the energy norm in such a way that the boundary layers are captured and that it can be reconciled with a robust finite element method, i.e.~robust with respect to this strong norm? In Chapter 2 we answer the first question. We show that the Galerkin finite element approximation converges uniformly in the energy norm to the solution of the reaction-diffusion problem on standard shape regular meshes. These results are completely new in two dimensions and are confirmed by numerical experiments. We also study certain convection-diffusion problems with characterisitc layers in which some layers are not well represented in the energy norm. These theoretical findings, validated by numerical experiments, have interesting implications for adaptive methods. Moreover, they lead to a re-evaluation of other results and methods in the literature. In 2011 Lin and Stynes were the first to devise a method for a reaction-diffusion problem posed in the unit square allowing for uniform a priori error estimates in an adequate so-called balanced norm. Thus, the aforementioned second question is answered in the affirmative. Obtaining a non-standard weak formulation by testing also with derivatives of the test function is the key idea which is related to the H^1-Galerkin methods developed in the early 70s. Unfortunately, this direct approach requires excessive smoothness of the finite element space considered. Lin and Stynes circumvent this problem by rewriting their problem into a first order system and applying a mixed method. Now the norm captures the layers. Therefore, they need to be resolved by some layer-adapted mesh. Lin and Stynes obtain optimal error estimates with respect to the balanced norm on Shishkin meshes. However, their method is unable to preserve the symmetry of the problem and they rely on the Raviart-Thomas element for H^div-conformity. In Chapter 4 of the thesis a new continuous interior penalty (CIP) method is present, embracing the approach of Lin and Stynes in the context of a broken Sobolev space. The resulting method induces a balanced norm in which uniform error estimates are proven. In contrast to the mixed method the CIP method uses standard Q_2-elements on the Shishkin meshes. Both methods feature improved stability properties in comparison with the Galerkin FEM. Nevertheless, the latter also yields approximations which can be shown to converge to the true solution in a balanced norm uniformly with respect to diffusion parameter. Again, numerical experiments are conducted that agree with the theoretical findings. In every finite element analysis the approximation error comes into play, eventually. If one seeks to prove any of the results mentioned on an anisotropic family of Shishkin meshes, one will need to take advantage of the different element sizes close to the boundary. While these are ideally suited to reflect the solution behavior, the error analysis is more involved and depends on anisotropic interpolation error estimates. In Chapter 3 the beautiful theory of Apel and Dobrowolski is extended in order to obtain anisotropic interpolation error estimates for macro-element interpolation. This also sheds light on fundamental construction principles for such operators. The thesis introduces a non-standard finite element space that consists of biquadratic C^1-finite elements on macro-elements over tensor product grids, which can be viewed as a rectangular version of the C^1-Powell-Sabin element. As an application of the general theory developed, several interpolation operators mapping into this FE space are analyzed. The insight gained can also be used to prove anisotropic error estimates for the interpolation operator induced by the well-known C^1-Bogner-Fox-Schmidt element. A special modification of Scott-Zhang type and a certain anisotropic interpolation operator are also discussed in detail. The results of this chapter are used to approximate the solution to a recation-diffusion-problem on a Shishkin mesh that features highly anisotropic elements. The obtained approximation features continuous normal derivatives across certain edges of the mesh, enabling the analysis of the aforementioned CIP method.:Notation 1 Introduction 2 Galerkin FEM error estimation in weak norms 2.1 Reaction-diffusion problems 2.2 A convection-diffusion problem with weak characteristic layers and a Neumann outflow condition 2.3 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers 2.3.1 Weakly imposed characteristic boundary conditions 2.4 Numerical experiments 2.4.1 A reaction-diffusion problem with boundary layers 2.4.2 A reaction-diffusion problem with an interior layer 2.4.3 A convection-diffusion problem with characteristic layers and a Neumann outflow condition 2.4.4 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers 3 Macro-interpolation on tensor product meshes 3.1 Introduction 3.2 Univariate C1-P2 macro-element interpolation 3.3 C1-Q2 macro-element interpolation on tensor product meshes 3.4 A theory on anisotropic macro-element interpolation 3.5 C1 macro-interpolation on anisotropic tensor product meshes 3.5.1 A reduced macro-element interpolation operator 3.5.2 The full C1-Q2 interpolation operator 3.5.3 A C1-Q2 macro-element quasi-interpolation operator of Scott-Zhang type on tensor product meshes 3.5.4 Summary: anisotropic C1 (quasi-)interpolation error estimates 3.6 An anisotropic macro-element of tensor product type 3.7 Application of macro-element interpolation on a tensor product Shishkin mesh 4 Balanced norm results for reaction-diffusion 4.1 The balanced finite element method of Lin and Stynes 4.2 A C0 interior penalty method 4.3 Galerkin finite element method 4.3.1 L2-norm error bounds and supercloseness 4.3.2 Maximum-norm error bounds 4.4 Numerical verification 4.5 Further developments and summary Reference

    Optimal Control Problems with Singularly Perturbed Differential Equations as Side Constraints: Analysis and Numerics

    Get PDF
    It is well-known that the solution of a so-called singularly perturbed differential equation exhibits layers. These are small regions in the domain where the solution changes drastically. These layers deteriorate the convergence of standard numerical algorithms, such as the finite element method on a uniform mesh. In the past many approaches were developed to overcome this difficulty. In this context it was very helpful to understand the structure of the solution - especially to know where the layers can occur. Therefore, we have a lot of analysis in the literature concerning the properties of solutions of such problems. Nevertheless, this field is far from being understood conclusively. More recently, there is an increasing interest in the numerics of optimal control problems subject to a singularly perturbed convection-diffusion equation and box constraints for the control. However, it is not much known about the solutions of such optimal control problems. The proposed solution methods are based on the experience one has from scalar singularly perturbed differential equations, but so far, the analysis presented does not use the structure of the solution and in fact, the provided bounds are rather meaningless for solutions which exhibit boundary layers, since these bounds scale like epsilon^(-1.5) as epsilon converges to 0. In this thesis we strive to prove bounds for the solution and its derivatives of the optimal control problem. These bounds show that there is an additional layer that is weaker than the layers one expects knowing the results for scalar differential equation problems, but that weak layer deteriorates the convergence of the proposed methods. In Chapter 1 and 2 we discuss the optimal control problem for the one-dimensional case. We consider the case without control constraints and the case with control constraints separately. For the case without control constraints we develop a method to prove bounds for arbitrary derivatives of the solution, given the data is smooth enough. For the latter case we prove bounds for the derivatives up to the second order. Subsequently, we discuss several discretization methods. In this context we use special Shishkin meshes. These meshes are piecewise equidistant, but have a very fine subdivision in the region of the layers. Additionally, we consider different ways of discretizing the control constraints. The first one enforces the compliance of the constraints everywhere and the other one enforces it only in the mesh nodes. For each proposed algorithm we prove convergence estimates that are independent of the parameter epsilon. Hence, they are meaningful even for small values of epsilon. As a next step we turn to the two-dimensional case. To be able to adapt the proofs of Chapter 2 to this case we require bounds for the solution of the scalar differential equation problem for a right hand side f only in W^(1,infty). Although, a lot of results for this problem can be found in the literature but we can not apply any of them, because they require a smooth right hand side f in C^(2,alpha) for some alpha in (0,1). Therefore, we dedicate Chapter 3 to the analysis of the scalar differential equations problem only using a right hand side f that is not very smooth. In Chapter 4 we strive to prove bounds for the solution of the optimal control problem in the two dimensional case. The analysis for this problem is not complete. Especially, the characteristic layers induce subproblems that are not understood completely. Hence, we can not prove sharp bounds for all terms in the solution decomposition we construct. Nevertheless, we propose a solution method. Numerical results indicate an epsilon-independent convergence for the considered examples - although we are not able to prove this

    On Discontinuous Galerkin Methods for Singularly Perturbed and Incompressible Miscible Displacement Problems

    Get PDF
    This thesis is concerned with the numerical approximation of problems of fluid flow, in particular the stationary advection diffusion reaction equations and the time dependent, coupled equations of incompressible miscible displacement in a porous medium. We begin by introducing the continuous discontinuous Galerkin method for the singularly perturbed advection diffusion reaction problem. This is a method which coincides with the continuous Galerkin method away from internal and boundary layers and with a discontinuous Galerkin method in the vicinity of layers. We prove that this consistent method is stable in the streamline diffusion norm if the convection field flows non-characteristically from the region of the continuous Galerkin to the region of the discontinuous Galerkin method. We then turn our attention to the equations of incompressible miscible displacement for the concentration, pressure and velocity of one fluid in a porous medium being displaced by another. We show a reliable a posteriori error estimator for the time dependent, coupled equations in the case where the solution has sufficient regularity and the velocity is bounded. We remark that these conditions may not be attained in physically realistic geometries. We therefore present an abstract approach to the stationary problem of miscible displacement and investigate an a posteriori error estimator using weighted spaces that relies on lower regularity requirements for the true solution. We then return to the continuous discontinuous Galerkin method. We prove in an abstract setting that standard (continuous) Galerkin finite element approximations are the limit of interior penalty discontinuous Galerkin approximations as the penalty parameter tends to infinity. We then show that by varying the penalization parameter on only a subset of the domain we reach the continuous discontinuous method in the limit. We present numerical experiments illustrating this approach both for equations of non-negative characteristic form (closely related to advection diffusion reaction equations) and to the problem of incompressible miscible displacement. We show that we may practically determine appropriate discontinuous and continuous regions, resulting in a significant reduction of the number of degrees of freedom required to approximate a solution, by using the properties of the discontinuous Galerkin approximation to the advection diffusion reaction equation. We finally present novel code for implementing the continuous discontinuous Galerkin method in C++

    Finite difference methods for singularly perturbed problems on non-rectangular domains

    Get PDF
    Singularly perturbed problems arise in many branches of science and are characterised mathematically by the presence of a small parameter m u ltip ly in g one or more of the highest derivatives in a differential equation. This thesis concerns singularly perturbed problems posed on non-rectangular domains. The methodology used is to perform a co-ordinate transformation to pose the problem on a rectangular domain and to then study the transformed problem. We first consider a class of parabolic problems. We classify the problems in the transformed problem class according to the nature and location of the layers present in th e ir solution. This classification then enables us to design numerical methods specific to each class of problems. Known theoretical results are stated for the convergence of some of the methods. We then examine in detail one particular method. Under certain assumptions it is shown that the numerical solutions generated by the method converge uniformly with respect to the singularly perturb ed parameter. Detailed numerical results are then presented which verify the theoretical results. The next class of problems considered is a class of elliptic problems. In this case the transformed differential equation contains a new term and the situation is thus more complex. For this reason we consider only the case when regular layers are present. An appropriate numerical method is constructed and under various assumptions it is proved th a t the numerical solutions converge uniformly, in the perturbed case, i.e., when the singularly perturbed parameter is small. This is the central result of the thesis. Extensive numerical computations are presented which verify the theoretical result

    Modified Streamline Diffusion Schemes for Convection-Diffusion Problems

    Get PDF
    We consider the design of robust and accurate finite element approximation methods for solving convection--diffusion problems. We develop some two--parameter streamline diffusion schemes with piecewise bilinear (or linear) trial functions and show that these schemes satisfy the necessary conditions for L2L^{2}-uniform convergence of order greater than 1/21/2 introduced by Stynes and Tobiska. For smooth problems, the schemes satisfy error bounds of the form O(h)āˆ£uāˆ£2O(h)|u|_{2} in an energy norm. In addition, extensive numerical experiments show that they effectively reproduce boundary layers and internal layers caused by discontinuities on relatively coarse grids, without any requirements on alignment of flow and grid. (Also cross-referenced as UMIACS-TR-97-71

    Numerical analysis of the nonlinear subgrid scale method

    Full text link

    Finite element approximation of high-dimensional transport-dominated diffusion problems

    Get PDF
    High-dimensional partial differential equations with nonnegative characteristic form arise in numerous mathematical models in science. In problems of this kind, the computational challenge of beating the exponential growth of complexity as a function of dimension is exacerbated by the fact that the problem may be transport-dominated. We develop the analysis of stabilised sparse finite element methods for such high-dimensional, non-self-adjoint and possibly degenerate partial differential equations.\ud \ud (Presented as an invited lecture under the title "Computational multiscale modelling: Fokker-Planck equations and their numerical analysis" at the Foundations of Computational Mathematics conference in Santander, Spain, 30 June - 9 July, 2005.
    • ā€¦
    corecore