7,465 research outputs found

    Uniform Asymptotics of Orthogonal Polynomials Arising from Coherent States

    Full text link
    In this paper, we study a family of orthogonal polynomials {ϕn(z)}\{\phi_n(z)\} arising from nonlinear coherent states in quantum optics. Based on the three-term recurrence relation only, we obtain a uniform asymptotic expansion of ϕn(z)\phi_n(z) as the polynomial degree nn tends to infinity. Our asymptotic results suggest that the weight function associated with the polynomials has an unusual singularity, which has never appeared for orthogonal polynomials in the Askey scheme. Our main technique is the Wang and Wong's difference equation method. In addition, the limiting zero distribution of the polynomials ϕn(z)\phi_n(z) is provided

    Uniform Asymptotics for Polynomials Orthogonal With Respect to a General Class of Discrete Weights and Universality Results for Associated Ensembles: Announcement of Results

    Full text link
    We compute the pointwise asymptotics of orthogonal polynomials with respect to a general class of pure point measures supported on finite sets as both the number of nodes of the measure and also the degree of the orthogonal polynomials become large. The class of orthogonal polynomials we consider includes as special cases the Krawtchouk and Hahn classical discrete orthogonal polynomials, but is far more general. In particular, we consider nodes that are not necessarily equally spaced. The asymptotic results are given with error bound for all points in the complex plane except for a finite union of discs of arbitrarily small but fixed radii. These exceptional discs are the neighborhoods of the so-called band edges of the associated equilibrium measure. As applications, we prove universality results for correlation functions of a general class of discrete orthogonal polynomial ensembles, and in particular we deduce asymptotic formulae with error bound for certain statistics relevant in the random tiling of a hexagon with rhombus-shaped tiles. The discrete orthogonal polynomials are characterized in terms of a a Riemann-Hilbert problem formulated for a meromorphic matrix with certain pole conditions. By extending the methods of [17, 22], we suggest a general and unifying approach to handle Riemann-Hilbert problems in the situation when poles of the unknown matrix are accumulating on some set in the asymptotic limit of interest.Comment: 28 pages, 7 figure

    A numerical method for oscillatory integrals with coalescing saddle points

    Full text link
    The value of a highly oscillatory integral is typically determined asymptotically by the behaviour of the integrand near a small number of critical points. These include the endpoints of the integration domain and the so-called stationary points or saddle points -- roots of the derivative of the phase of the integrand -- where the integrand is locally non-oscillatory. Modern methods for highly oscillatory quadrature exhibit numerical issues when two such saddle points coalesce. On the other hand, integrals with coalescing saddle points are a classical topic in asymptotic analysis, where they give rise to uniform asymptotic expansions in terms of the Airy function. In this paper we construct Gaussian quadrature rules that remain uniformly accurate when two saddle points coalesce. These rules are based on orthogonal polynomials in the complex plane. We analyze these polynomials, prove their existence for even degrees, and describe an accurate and efficient numerical scheme for the evaluation of oscillatory integrals with coalescing saddle points

    Asymptotic behavior and zero distribution of polynomials orthogonal with respect to Bessel functions

    Get PDF
    We consider polynomials P_n orthogonal with respect to the weight J_? on [0,?), where J_? is the Bessel function of order ?. Asheim and Huybrechs considered these polynomials in connection with complex Gaussian quadrature for oscillatory integrals. They observed that the zeros are complex and accumulate as n?? near the vertical line Rez=??2. We prove this fact for the case 0???1/2 from strong asymptotic formulas that we derive for the polynomials Pn in the complex plane. Our main tool is the Riemann-Hilbert problem for orthogonal polynomials, suitably modified to cover the present situation, and the Deift-Zhou steepest descent method. A major part of the work is devoted to the construction of a local parametrix at the origin, for which we give an existence proof that only works for ??1/2
    corecore