830 research outputs found

    A particle-based dissolution model using chemical collision energy

    Get PDF
    We propose a new energy-based method for real-time dissolution simulation. A unified particle representation is used for both fluid solvent and solid solute. We derive a novel dissolution model from the collision theory in chemical reactions: physical laws govern the local excitation of solid particles based on the relative motion of the fluid and solid. When the local excitation energy exceeds a user specified threshold (activation energy), the particle will be dislodged from the solid. Unlike previous methods, our model ensures that the dissolution result is independent of solute sampling resolution. We also establish a mathematical relationship between the activation energy, the inter-facial surface area, and the total dissolution time - allowing for accurate artistic control over the global dissolution rate while maintaining the physical plausibility of the simulation. We demonstrate applications of our method using a number of practical examples, including antacid pills dissolving in water and hydraulic erosion of non-homogeneous terrains. Our method is straightforward to incorporate with existing particle-based fluid simulations

    Visual Simulation of Multiple Fluids in Computer Graphics: A State-of-the-Art Report

    Get PDF
    Realistic animation of various interactions between multiple fluids, possibly undergoing phase change, is a challenging task in computer graphics. The visual scope of multi-phase multi-fluid phenomena covers complex tangled surface structures and rich color variations, which can greatly enhance visual effect in graphics applications. Describing such phenomena requires more complex models to handle challenges involving the calculation of interactions, dynamics and spatial distribution of multiple phases, which are often involved and hard to obtain real-time performance. Recently, a diverse set of algorithms have been introduced to implement the complex multi-fluid phenomena based on the governing physical laws and novel discretization methods to accelerate the overall computation while ensuring numerical stability. By sorting through the target phenomena of recent research in the broad subject of multiple fluids, this state-of-the-art report summarizes recent advances on multi-fluid simulation in computer graphics

    Turbulent Micropolar SPH Fluids with Foam

    Get PDF
    In this paper we introduce a novel micropolar material model for the simulation of turbulent inviscid fluids. The governing equations are solved by using the concept of Smoothed Particle Hydrodynamics (SPH). SPH fluid simulations suffer from numerical diffusion which leads to a lower vorticity, a loss in turbulent details and finally in less realistic results. To solve this problem we propose a micropolar fluid model. The micropolar fluid model is a generalization of the classical Navier-Stokes equations, which are typically used in computer graphics to simulate fluids. In contrast to the classical Navier-Stokes model, micropolar fluids have a microstructure and therefore consider the rotational motion of fluid particles. In addition to the linear velocity field these fluids have a field of microrotation which represents existing vortices and provides a source for new ones. Our novel micropolar model can generate realistic turbulences, is linear and angular momentum conserving, can be easily integrated in existing SPH simulation methods and its computational overhead is negligible. Another important visual feature of turbulent liquids is foam. Therefore, we present a post-processing method which considers microrotation in the foam generation. It works completely automatic and requires only one user-defined parameter to control the amount of foam

    Continuum Foam: A Material Point Method for Shear-Dependent Flows

    Get PDF
    © ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Yue, Y., Smith, B., Batty, C., Zheng, C., & Grinspun, E. (2015). Continuum Foam: A Material Point Method for Shear-Dependent Flows. Acm Transactions on Graphics, 34(5), 160. https://doi.org/10.1145/2751541We consider the simulation of dense foams composed of microscopic bubbles, such as shaving cream and whipped cream. We represent foam not as a collection of discrete bubbles, but instead as a continuum. We employ the material point method (MPM) to discretize a hyperelastic constitutive relation augmented with the Herschel-Bulkleymodel of non-Newtonian viscoplastic flow, which is known to closely approximate foam behavior. Since large shearing flows in foam can produce poor distributions of material points, a typical MPM implementation can produce non-physical internal holes in the continuum. To address these artifacts, we introduce a particle resampling method for MPM. In addition, we introduce an explicit tearing model to prevent regions from shearing into artificially thin, honey-like threads. We evaluate our method's efficacy by simulating a number of dense foams, and we validate our method by comparing to real-world footage of foam.This work was supported in part by the JSPS Postdoctoral Fellowshipsfor Research Abroad, NSF (Grants IIS-13-19483, CMMI-11-29917, CAREER-1453101), NSERC (Grant RGPIN-04360-2014), Intel, The Walt Disney Company, Autodesk, Side Effects, NVIDIA,Adobe, and The Foundry

    Multiple-fluid SPH simulation using a mixture model

    Get PDF
    This article presents a versatile and robust SPH simulation approach for multiple-fluid flows. The spatial distribution of different phases or components is modeled using the volume fraction representation, the dynamics of multiple-fluid flows is captured by using an improved mixture model, and a stable and accurate SPH formulation is rigorously derived to resolve the complex transport and transformation processes encountered in multiple-fluid flows. The new approach can capture a wide range of real-world multiple-fluid phenomena, including mixing/unmixing of miscible and immiscible fluids, diffusion effect and chemical reaction, etc. Moreover, the new multiple-fluid SPH scheme can be readily integrated into existing state-of-the-art SPH simulators, and the multiple-fluid simulation is easy to set up. Various examples are presented to demonstrate the effectiveness of our approach

    Energy-based dissolution simulation using SPH sampling

    Get PDF
    A novel unified particle-based method is proposed for real-time dissolution simulation that is fast, predictable, independent of sampling resolution, and visually plausible. The dissolution model is derived from collision theory and integrated into a smoothed particle hydrodynamics fluid solver. Dissolution occurs when a solute is submerged in solvent. Physical laws govern the local excitation of solute particles based on kinetic energy: when the local excitation energy exceeds a user-specified threshold (activation energy), the particle will be dislodged from the solid. Solute separation during dissolution is handled using a new Graphics Processing Unit (GPU)-based region growing method. The use of smoothed particle hydrodynamics sampling for both solute and solvent guarantees a predictable and smooth dissolution process and provides user control of the volume change during the phase transition. A mathematical relationship between the activation energy and dissolution time allows for intuitive artistic control over the global dissolution rate. We demonstrate this method using a number of practical examples, including antacid pills dissolving in water, hydraulic erosion of nonhomogeneous terrains, and melting
    corecore