819 research outputs found

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    MIPv6 Experimental Evaluation using Overlay Networks

    Get PDF
    The commercial deployment of Mobile IPv6 has been hastened by the concepts of Integrated Wireless Networks and Overlay Networks, which are present in the notion of the forthcoming generation of wireless communications. Individual wireless access networks show limitations that can be overcome through the integration of different technologies into a single unified platform (i.e., 4G systems). This paper summarises practical experiments performed to evaluate the impact of inter-networking (i.e. vertical handovers) on the Network and Transport layers. Based on our observations, we propose and evaluate a number of inter-technology handover optimisation techniques, e.g., Router Advertisements frequency values, Binding Update simulcasting, Router Advertisement caching, and Soft Handovers. The paper concludes with the description of a policy-based mobility support middleware (PROTON) that hides 4G networking complexities from mobile users, provides informed handover-related decisions, and enables the application of different vertical handover methods and optimisations according to context.Publicad

    Review of network integration techniques for mobile broadband services in next generation network

    Get PDF
    Next Generation Network (NGN) is intended at integrating the existing heterogeneous wireless access networks in order to produce a composite network that provides users with ubiquitous broadband experience. Currently, it has been established that Long Term Evolution (LTE) network, as a backbone network, provides broadband capacity with high efficiency, reduced latency and improved resource provisioning. Resource provisioning on this backbone network is not without its limitation as more mobile broadband services (MBBs) are evolving and users demand for mobility is on the increase. This paper, therefore, reviewed the different integration techniques for the heterogeneous networks that use LTE network as backbone that supports mobile broadband services.Keywords: MBB, NGN, LTE, SIP, Qo

    Novel Model of Adaptive Module for Security and QoS Provisioning in Wireless Heterogeneous Networks

    Get PDF
    Considering the fact that Security and Quality-Of-Service (QoS) provisioning for multimedia traffic in Wireless Heterogeneous Networks are becoming increasingly important objectives, in this paper we are introducing a novel adaptive Security and QoS framework. This framework is planned to be implemented in integrated network architecture (UMTS, WiMAX and WLAN). The aim of our novel framework is presenting a new module that shall provide the best QoS provisioning and secure communication for a given service using one or more wireless technologies in a given time

    Implementation of Vertical Handoff Algorithm between IEEE802.11 WLAN and CDMA Cellular Network

    Get PDF
    Today’s wireless users expect great things from tomorrow’s wireless networks. These expectations have been fueled by hype about what the next generations of wireless networks will offer. The rapid increase of wireless subscribers increases the quality of services anytime, anywhere, and by any-media becoming indispensable. Integration of various networks such as CDMA2000 and wireless LAN into IP-based networks is required in these kinds of services, which further requires a seamless vertical handoff to 4th generation wireless networks. The proposed handoff algorithm between WLAN and CDMA2000 cellular network is implemented. The results of the simulation shows the behavior of the handoff and the time spent in WLAN or CDMA. The number of weak signal beacons determines whether a handoff is required or not. In this algorithm, traffic is classified into real-time and non real-time services

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks

    Get PDF
    MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deployment of mmWave base stations were proposed. This Thesis aims to improve the reliability and performance of the 5G network by studying its tight and seamless integration with the current LTE cellular network. In particular, the LTE base stations can provide a coverage layer for 5G mobile terminals, because they operate on microWave frequencies, which are less sensitive to blockage and have a lower pathloss. This document is a copy of the Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorzi. It will propose an LTE-5G tight integration architecture, based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns-3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G.Comment: Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorz

    Comparison of 3GPP LTE and 3GPP2 UMB

    Get PDF
    In the last years, technology evolution in mobile communications is mainly motivated by three relevant agents: (1) the market globalization and liberalization and the increasing competence among vendors and operators coming from this new framework, (2) the popularization of IEEE 802 wireless technologies within the mobile communications sector and, finally, (3) the exponential increase in the demand for advanced telecommunication services. Concerning the last item, the envisaged applications to be supported by current and future cellular systems include Voice over IP (VoIP), videoconference, push-to-talk over cellular (PoC), multimedia messaging, multiplayer games, audio and video streaming, content download of ring tones, video clips, Virtual Private Network (VPN) connections, web browsing, email access, File Transfer Protocol (FTP). Thus, the race towards IMT-Advanced was officially started in March 2008, when a Circular Letter was distributed asking for the submission of new technology proposals. Previous to this official call, the 3rd Partnership Project (3GPP) established the Long Term Evolution (LTE) and the 3rd Partnership Project 2 (3GPP2) established the Ultra Mobile Broadband. In this paper we have conducted a comparative study between UMB and 3GPP LTE by focusing on their first layers, i.e. Physical layer. The comparison specifically includes system architecture, radio aspects of the air interface such as radio access modes, multiple access technologies, multiple antenna technologies, modulation and mobility

    Mobile Edge Computing for 5G Internet of Things

    Get PDF
    This is the author accepted manuscript. The final version is available from CRC Press via the link in this recor
    • …
    corecore